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Abstract—Human-based speaker diarization experiments were
carried out on a five-minute extract of a typical AMI corpus
meeting to see how much variance there is in human reviews
based on hearing only and to compare with state-of-the-art
diarization systems on the same extract. There are three distinct
experiments: (a) one with no prior information; (b) one with the
ground truth speech activity detection (GT-SAD); and (c) one
with the blank ground truth labels (GT-labels). The results show
that most human reviews tend to be quite similar, albeit with
some outliers, but the choice of GT-labels can make a dramatic
difference to scored performance. Using the GT-SAD provides a
big advantage and improves human review scores substantially,
though small differences in the GT-SAD used can have a dramatic
effect on results. The use of forgiveness collars is shown to be
unhelpful. The results show that state-of-the-art systems can
outperform the best human reviews when no prior information
is provided. However, the best human reviews still outperform
state-of-the-art systems when starting from the GT-SAD.

I. INTRODUCTION

A. Speaker Diarization Background

Speaker diarization is the process of distinguishing differ-
ent speakers in any given speech signal and identifying the
times during which they speak. It involves two fundamental
aspects: (i) segmentation of speech data into either constant
time periods (e.g. a fixed number of frames) or non-constant
time periods that are homogeneous in some way (e.g. single
speaker speech, overlapping speaker speech or no speech);
and (ii) clustering and/or labelling the segments identified to
attribute them to individual speakers [1], [2], [3], [4].

Good speaker diarization has many important applications,
such as being used as a first step before applying automatic
speech recognition (ASR), thereby making existing audio
transcripts more meaningful and searchable, or to assist hear-
ing impaired people with identifying different speakers on
conference calls. It is the focus of much academic research
and several challenges (e.g. DIHARD I, II and III [5], [6],
[7], CHiME-6 [8] and VoxSRC 2021 Track 4 [9]). This paper
focuses on single channel recordings.

B. Labels and Scoring

By far the most commonly used speaker diarization scoring
mechanism is the diarization error rate (DER) using the
md-eval.pl file originated for the NIST Rich Transcription
challenges held from 2002 to 2009 [10]. This is a time-
based measure that involves comparing the system outputs to a
ground truth reference file. As shown in this paper, results can

be dramatically affected by small differences in the ground
truth, which means it is not a wholly satisfactory scoring
mechanism. However, accurate scoring is an essential element
of determining the best systems and what the best approaches
for improvement are.

A distinction needs to be drawn between speaker diariza-
tion systems that start from the ground truth speech activity
detection (GT-SAD) from those that do not (they either (a) use
a separate speech activity detection (SAD) system either as a
pre-processing step [11], [12] or as a post-processing step [13]
or (b) have it built directly into their system in some way such
as end-to-end systems [14]). The DIHARD challenges operate
separate scoreboards for these – Track 1 covers systems that
start from the GT-SAD, Track 2 covers systems that do not, and
error rates for the latter are considerably higher. For example,
for the DIHARD III core set, the Track 1 winning DER
was 13.45% and the Track 2 winning DER was 19.37%, a
difference of 5.92% [15]. Moreover, this difference increases
steadily going down the list – for example, the average of top
five Track 1 DERs was 14.766% and five Track 2 DERs was
21.836%, a difference of 7.07%. Similarly, in DIHARD II the
Track 1 winning DER was 18.42% and the Track 2 winning
DER was 27.11%, a difference of 8.69%.

Scoring uses the ground truth labels (GT-labels). When a
GT-SAD is used, it is created from GT-labels, so is only as
accurate as those GT-labels and has the same assumptions.

A final reason why accurate labelling is necessary is that
if inaccurate labels are used in supervised model training,
they could result in the models themselves being confused.
For example, training a supervised model using labels that
show someone speaking when in fact they are not or vice
versa will harm the model, particularly if it is not robust
to those uncertainties/errors. Systems such as [11] mitigate
this by training features on data that do not have inaccurate
labels (specifically x-vectors on VoxCeleb 1 and 2 data [16])
and extract features from comparatively long speech sections
of 1.5 s, before refining systems with probabilistic linear
discriminant analysis (PLDA) models trained on potentially
less accurate labels in the validation set [12], [17].

C. Human Reviews Experiment Structure

There are three distinct parts:
1) Experiment 1 - no prior information given to reviewers,

so they need to decide start and end times of each label
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as well as distinguishing the speakers. This is consistent
with how Track 2 of the DIHARD challenges work;

2) Experiment 2 - reviewers start from the GT-SAD, so
they need to label one or more speakers at various times
within the GT-SAD only. This is consistent with how
Track 1 of the DIHARD challenges work; and

3) Experiment 3 - reviewers start from the blank GT-labels,
so they just need to distinguish speakers. This is not done
in any current challenges, but is helpful for identifying
human ability to discriminate speakers purely based on
what they can hear rather than more subjective placement
of timing boundaries.

Reviews were done in this order for individual reviewers
so more detailed prior information from earlier reviews would
not influence later reviews.

II. HUMAN REVIEWS ANALYSIS

The time-based scoring methodology used by
md-eval.pl [10] and this paper is

DER =
τM + τFA + τSE

τTOTAL
, (1)

where τM is the miss time, τFA is the false alarm time, τSE

is the speaker error time, τTOTAL is the total speech time and
DER is the diarization error rate (expressed as a percentage).
The individual components of DER are MISS, FA and SE,
which are the relevant times τM , τFA and τSE respectively
divided by τTOTAL and expressed as a percentage.

Scoring of diarization systems is highly sensitive to assump-
tions made and small variations. For example, if a speaker is
speaking but has a short pause between two parts (regardless of
whether they are in the same sentence), then one ground truth
label might treat as a single utterance whereas another splits it
into two. Diarization challenges explicitly state the minimum
pause duration before an utterance is split into two, such as
300 ms for the NIST Rich Transcription challenges [10] or
200 ms for the DIHARD challenges [7], but these are hard
to maintain consistently and there is considerable subjectivity.
Even more problematically, most labelling readily available is
much less accurate, so ideally a way could be found to take
advantage of the less accurate labels without penalising the
scoring of more accurately labelled systems.

Uniform forgiveness collars are crude attempts to mitigate
this problem [18]. These exclude collars of plus and minus
the collar size around the GT-labels from scoring. Simple
illustrative examples were set up for 10 s sections with 9 s
speech (with variations for pauses and overlapping speech) and
are shown in Figs 1 and 2. As shown in Fig. 1, the forgiveness
collars around the GT-label starts and ends will ignore system
predictions in that collar (it “forgives” errors, but equally does
not reward correct predictions in those collars), but if imprecise
ground truth labelling is used then system labels showing
pauses where the ground truth does not will be penalised.
Conversely, Fig. 2 shows that precise ground truth labels along
with short overlapping speech results in excessive forgiveness
and relatively little scored speech. Some diarization challenges

UEM 10

GT 9

System 3 3 20.5 0.5

Fig. 1: Example segmentation and collars with imprecise
ground truth labelling and precise system labelling (250 ms

collar: DER = 11.8%; no collar: DER = 11.1%). All
numbers in s. UEM means unpartioned evaluation map.

still use collars (e.g. VoxSRC 2021 Track 4 [9]), but most do
not (e.g. DIHARD I, II and III [5], [6], [7] and CHiME-6 Track
2 [8]) and some researchers have opined that collars should be
excluded [12].

III. HUMAN REVIEWS EXPERIMENTAL DESIGN AND
RESULTS

A. Datasets and Systems Used

A five-minute extract of the AMI Corpus [19] ES2008a
headset recordings was used, specifically between 0:30.000
and 5:30.500 (slightly longer than five-minutes to complete the
last utterance). This is recorded in the unpartitioned evaluation
map (UEM) file in scoring; note that the UEM is simply the
portion of the speech file to be evaluated [10].

The GT-SAD used in Experiment 2 is created from the
GT-labels. Initially, the GT-labels were constructed from the
ES2008a.[A-D].segments.xml files (GT1), but it was
found that (a) these contained silence of 0.25-0.5 s at the starts
and ends of each segment which greatly increased miss errors
[20] (possibly on the basis that false positives were seen as
worse than false negatives in a SAD used for ASR [21], [22])
and (b) they included non-lexical sounds such as laughter and
speech. Consequently, for Experiment 1 the scoring was sub-
sequently repeated by excluding GT-labels (and consequently

UEM 10

GT
1.5

1

6.51.0

System 9

Fig. 2: Example segmentation and collars with precise
ground truth labelling, overlapping speech and imprecise
system labelling (250 ms collar: DER = 0%; no collar:

DER = 16.7%). All numbers in s.
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TABLE I: Comparison of ES2008 extracts statistics for different ground truths. “Tot.” is the total aggregate speech time (i.e.
adding together all overlapping speech), “Dur.” means duration, “Num.” means number, “Ave.” means average, “Seg.” means
segment, “Comb.” refers to the combined speech time (i.e. the time during which there is at least one speaker) and “Ch. Rate”
is the rate at which the speakers change.

Segments Tot. Dur. (s) Tot. Num. Segs Comb. Dur. (s) Comb. Num. Segs Overlap (%) Ch. Rate (Hz) Ave. Seg. Dur. (s)
GT1 251.05 47 231.35 30 8.52 0.406 5.34
GT2 247.00 40 230.66 29 6.15 0.327 6.12
GT3 230.12 41 220.32 31 4.45 0.356 5.61
GT4 237.05 48 221.59 32 6.98 0.319 6.98

the GT-SAD constructed from it) that only contained non-
lexical sounds (GT2), and for Experiment 2 the GT-SAD was
reconstructed from GT2. After that, GT-labels and GT-SAD
were constructed from the ES2008a.[A-D].words.xml
files generated for the AMI corpus for words only using forced
alignment and HTK [19] (conveniently already extracted in
the “only words” directory of [12], [23]) (GT3) and lastly
constructed from those same AMI corpus files but this time
including non-word vocal sounds and conveniently in the
“word and vocalsounds” directory of [12], [23] (GT4 and,
together with GT1, GT2 and GT3, the GTs). References to
GT-labels and GT-SAD generated from specific ground truths
are GT1-labels and GT1-SAD, for example.

Some results for Experiment 1 are shown for all four GT-
labels to highlight sensitivity to specific labels, but Experi-
ments 2 and 3 are based on GT3 only. Table I highlights
differences across these different GT-labels and Fig. 3 shows
a histogram of the GT3-labels durations.

For Experiment 2, the starting point GT-SAD and the
scoring GT-labels were both based on GT3. For Experiment 3,
the blank starting point GT-labels and the scoring GT-labels
were both based on GT3.

The reviewers listened to the speech file individually using
Sennheiser HDA 300 headphones following the instructions
at [24]. The labels were recorded on Audacity [25] with the
experiment administrator present to ensure the experiments
were carried out consistently and to avoid inadvertent errors
(e.g. if the end of a label was selected that moved the start
as well, or if pressing ctrl-z for “undo” caused unexpected
changes). Audacity was clearly not the perfect tool for labelling
and all reviewers found it awkward to use.

The reviewer numbers for Experiment 1 are different to
those in Experiments 2 and 3 because the numbering was based
on the order that the reviewers carried out the Experiments. Ex-
periment 1 was carried out several weeks before Experiments 2
and 3 (these two were on the same day).

The anonymous results of the experiments are available
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Fig. 3: Histogram of GT3-labels durations.

at [24]. A Colab notebook analysing them is at [26]. Sec-
tions III-B to III-D highlight the most significant results.

B. Experiment 1 Results

With 13 human reviews, Fig. 4 shows the timeline of the
GT3 for the speech extract along with each of the reviews.
The error scored against GT3 for each reviewer plotted against
the number of speech segments predicted is shown in Fig. 5.
There are two outliers, one of whom predicted few segments
and the other predicted many (and the latter with a very low
total speech time), so these are ignored in Table II.

Fig. 5 shows the importance of predicting roughly the same
number of segments as the ground truth labels, regardless
of whether forgiveness collars are applied. Including the two
outliers and ignoring the system results, this graph looks
strongly parabolic with minimum around the number of ground
truth labels. That said, there is a clear vertical line where
a number of reviewers predicted much the same number of
segments (8 of the 13 reviewers predicted 35 to 38 segments)
yet their DERs differed by as much as 5.86%.

Table II shows that excluding non-lexical sounds such as
laughter and coughing improves results (GT2 better than GT1
and GT3 better than GT4), which is not surprising as the
reviewers had been told to exclude them. Using GT3 rather
than GT2 or GT4 rather than GT1 improves DER results
significantly, highlighting the fact that small differences can
make a dramatic difference to the results, regardless of what
forgiveness collars are used. Using collars increases DER stan-
dard deviations slightly in all cases, which is counter-intuitive
as similar reviews before applying collars should become
almost identical if those collars are properly applied, which
is not the case here. Uniform forgiveness collars only work
well if the predicted number of segments matches the number
used by the relevant ground truth and they are consistent in
where the speech and non-speech portions are.

Comparing to state-of-the-art systems was rather cumber-
some. Many of them require a good SAD, but using some
of the industry standard pre-trained models such as Google
VAD [27], [28] or Silero [29] that could not be tuned on

TABLE II: Experiment 1 means and standard deviations
(STDs) for different GTs with either (a) 250 ms collars or
(b) no collars. All figures in %.

GT 250 ms Means 250 ms STDs 0 ms Means 0 ms STDs
GT1 11.93 1.51 18.94 1.43
GT2 11.02 1.46 17.20 1.45
GT3 8.95 1.60 15.60 1.53
GT4 10.27 1.66 17.62 1.44
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Fig. 5: Experiment 1 graphs showing reviewer errors in dots plotted against the number of segments they predicted for (a) 250 ms
forgiveness collars and (b) no forgiveness collars. The pyannote.audio V2 baseline is in + and V1 in +.

the validation set led to much worse results than the human
reviews. These systems are considered in Experiment 2 as the
GT-SAD improves their results significantly. Others such as
end-to-end systems either required some tuning on a validation
set [14] and/or did not have an option to start from the GT-
SAD. The baseline system tested in Experiment 1 is the default
pre-trained model for pyannote.audio Version 2.0.1 (V2)
[30], [31], which had a no-collar DER of 11.23% that outper-
formed even the best human review of 12.80%. It predicted
40 speaker segments, close to the 41 of GT3, so is consistent
with the observation that segment number predictions closer to
that of the GT used improves performance. The dia_ami pre-
trained model for pyannote.audio Version 1.1.2 (V1) [32]
was also tested as this model had the option of starting from the
GT-SAD and is used in Experiment 2. The dia_dihard pre-
trained model for pyannote.audio V1 was also tried and
predicted 99 segments with 28.15% DER (not shown in any
of the graphs), highlighting sensitivity of model performance
to training on suitable data.

Fig. 6 illustrates the trade-off between misses and false
alarms. Increasing the miss generally leads to a similar de-
crease in the false alarm, and vice versa. Ignoring the two
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Fig. 6: Experiment 1 graphs of miss v. false alarm trade-off
for (a) 250 ms collars and (b) no collars.

outliers, a 45◦ diagonally descending line would be a decent
fit. Fig. 7 shows the importance of predicting roughly the right
aggregate length of time as the ground truth labels. This is
not as clearly defined as the parabola in Fig. 5 is though,
suggesting that predicting the right number of segments is
more important than predicting the right overall speech time.

C. Experiment 2 Results

With 10 human reviews, the DER means and standard
deviations shown in Table III are significantly better than for
Experiment 1 (11.11% better without a collar, 6.92% better
with). No outliers for Experiment 2 need to be excluded. This
confirms that it is far easier to diarize speakers if the GT-SAD
(or SAD that accurately reflects the GT-SAD) is used. This is
consistent with results from speaker diarization challenges; for
example, (a) in DIHARD II the system SAD Track 2 winning
DER was 27.11% and the GT-SAD Track 1 winning DER
was 18.42% [33] and (b) in DIHARD III the system SAD
Track 2 winning DER was 19.27% and the GT-SAD Track
1 winning DER was 13.45% [15]. If a single speaker was
predicted at all times, FA would fall to zero and MISS would
reflect the missed overlapping speakers. Fig. 8 shows there is
much less importance in predicting roughly the same number
of segments as the ground truth labels than for Experiment 1,
which is because the GT-SAD takes away the biggest source
of uncertainties and consequently reduces the variance.

Longer utterances contain more speaker information, and
reviewers found them easy. Only 2 of 10 reviewers correctly
identified the short 0.41 s utterance of “hmm” at the start as
being by a different speaker from the immediately following
speaker. In Experiment 1, only 3 of 13 reviewers counted that

TABLE III: Experiment 2 means and STDs for either
(a) 250 ms collars or (b) no collars. All figures in %.

GT 250 ms Means 250 ms STDs 0 ms Means 0 ms STDs
GT3 2.03 0.64 4.49 0.73
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Fig. 7: Experiment 1 graphs showing the reviewer errors in dots plotted against the aggregate total speech time they predicted
for (a) 250 ms forgiveness collars and (b) no forgiveness collars. The pyannote.audio V2 baseline is in + and V1 in +.

short utterance speech and none identified it as being by a
different speaker than the immediately following speaker.

The three state-of-the-art comparison systems are [11]
(BDII), [12] (ResNet101) and the pyannote.audio V1
dia_ami pre-trained model. The pyannote.audio V1
and V2 systems use features generated from raw audio using
SincNet [34] and have the significant advantage of being
trained on AMI data. BDII and ResNet101 use x-vectors
trained on VoxCeleb along with PLDA models trained on
VoxCeleb and DIHARD validation set data.

D. Experiment 3 Results

Fig. 9 uses review times on the x-axis to distinguish the
reviewers as the predicted number of segments and aggregate
predicted speech time was identical for all. With 10 human
reviews, these scores are dramatically better than those for
Experiments 1 and 2. MISS and FA naturally fall to zero,
so the only errors come from SE which fall to 1.41% without
collars and 0.68% with 250 ms collars as shown in Table IV.

E. Reviewer Observations

While the recordings were generally clear, the reviewers
found the heavy breathing annoying. This was caused by the
headset microphones being directly in front of the speakers’
mouths rather than to the side, and may have affected the
ability to hear quiet or whispered speech at times.

Several reviewers noted the female speakers all had similar
pitch, so reviewers used semantic information to distinguish
them at times rather than vocal pitch or timbre. Two reviewers
who were non-native English speakers felt they were at a disad-
vantage compared to the native English speakers. Furthermore,

TABLE IV: Experiment 3 means and STDs for either
(a) 250 ms collars or (b) no collars. All figures in %.

GT 250 ms Means 250 ms STDs 0 ms Means 0 ms STDs
GT3 0.68 0.69 1.41 1.03

times when an existing female speaker interjected in a higher-
pitched voice or showing more emotion were often incorrectly
thought to have been a different speaker altogether.

All reviewers coped well when there were two speakers
at the same time, but all struggled when there were more
than two. Part of the problem was that overlapping speech
tended to be very short, which often did not contain enough
speaker information for the reviewer to determine who it was.
Furthermore, reviewers were told to classify vocal sounds
such as “hmm”, “em”, “um” and “uh” as speech (these are
vocal disfluencies or filler words that generally do not contain
semantic information, but do have some speaker information
and could convey approval or disapproval of a point) but not
non-lexical sounds such as laughter or coughing, and in some
cases it was not easy to distinguish them. GT3 records 22.69 s
of those utterances, a significant 9.04% of overall speech time.

IV. DISCUSSION AND CONCLUSION

Sections III-B to III-D make it clear that human reviews can
produce wildly diverging performance, showing how sensitive
the scoring methodology is to specific assumptions and vari-
ations. The main difficulties are caused by short utterances,
especially any uncertainty as to whether they constitute proper
vocal sounds that should be recorded, along with overlapping
speech and discretion on whether short pauses in utterances
should be treated as a break in those utterances.

The human reviews results show that the use of uniform
forgiveness collars is somewhat arbitrary and generally not
helpful. They make sense if the speech segments identified
match those of the ground truth except for small deviations at
the ground truth segment boundaries, but fail to take account
of differences elsewhere. Applying forgiveness collars to the
human reviews resulted in a significant decrease in every DER,
as expected, but also led to an increase in the DER standard
deviations. Each reviewer clearly has a different amount of
error within the forgiveness collar, and reviewers with more
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Fig. 8: Experiment 2 graphs showing reviewer errors in dots plotted against number of segments predicted using GT3-SAD for
(a) 250 ms forgiveness collars and (b) no forgiveness collars. BDII in +, ResNet101 in +, pyannote.audio V1 in +.

errors in the forgiveness collars will have their DERs reduced
by more than those with less when the forgiveness collars
are excluded. If the overall errors were primarily due to
imprecise placement of the speaker segments starts and ends
within the forgiveness collars, the expectation is that reviewers
with higher DERs would have more errors in the forgiveness
collars than those with lower DERs, and consequently those
higher DERs would be reduced by more than the lower DERs,
resulting in a lower standard deviation in the DERs. As the
standard deviation in fact increased, it means that reviewers
with higher DERs did not in general have more errors in
the forgiveness collars, and consequently must have had more
errors elsewhere. However, had the ground truth made different
assumptions about the pauses, those other reviews might have
fared better when the forgiveness collars were excluded. All

the forgiveness collar has done is make the DERs look better
on the whole, it has not improved the results of all reviews
equally or fairly as the ones that made different assumptions
about the pauses are more harshly penalised.

In Experiment 1, pyannote.audio V2 outperformed all
human reviewers, with no-collar DER 11.23% compared to
12.80% of the best human. In Experiment 2, 7 of 10 human
reviews outperformed all baseline systems, with the best hu-
man no-collar DER of 3.46% compared to 5.25% of the best
system. Also, pyannote.audio V1 dramatically improved
from 22.86% DER in Experiment 1 to 5.25% in Experiment 2,
highlighting sensitivity to SAD reflecting the ground truth.
These results suggest that state-of-the-art diarization systems
are already better than humans at predicting speaker segment
times that are consistent with the ground truth (there are some
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Fig. 9: Experiment 3 graphs showing reviewer errors in dots plotted against their review time based on the GT3-labels for
(a) 250 ms forgiveness collars and (b) no forgiveness collars.
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caveats here – it may have been fortunate to have chosen
an Experiment 1 baseline system that had similar assump-
tions to the ground truth). However, good human reviews
still outperform relatively simple state-of-the-art diarization
systems when starting from GT-SAD, so humans are better at
distinguishing speakers. More sophisticated systems involving
multiple components, along with a SAD consistent with that
used for scoring, are essential for system performance to reach
and exceed human performance.
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