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ABSTRACT
Recent work in speech enhancement has proposed a poly-
nomial eigenvalue decomposition (PEVD) method, yielding
significant intelligibility and noise-reduction improvements
without introducing distortions in the enhanced signal [1].
The method relies on the estimation of a space-time covari-
ance matrix, performed in batch mode such that a sufficiently
long portion of the noisy signal is used to derive an accurate
estimate. However, in applications where the scene is non-
stationary, this approach is unable to adapt to changes in the
acoustic scenario. This paper thus proposes a frame-based
procedure for the estimation of space-time covariance matri-
ces and investigates its impact on subsequent PEVD speech
enhancement. The method is found to yield spatial filters and
speech enhancement improvements comparable to the batch
method in [1], showing potential for real-time processing.

Index Terms— polynomial eigenvalue decomposition,
speech enhancement, adaptive processing

1. INTRODUCTION

The topic of polynomial eigenvalue decomposition (PEVD)
has recently gained traction in the signal processing litera-
ture. Applications were found in multichannel enhancement
for arbitrarily-shaped arrays [1], spherical microphones [2],
or distributed microphone networks [3]; in channel identifi-
cation [4]; in DOA estimation with polynomial MUSIC [5–
7]; in voice activity detection [8]; or in beamforming with
a broadband MVDR beamformer [9]. These methods rely
on the estimation of a space-time covariance matrix captur-
ing signal correlations in space, time, and frequency, thereby
allowing true broadband processing [1]. However, this ma-
trix estimation is performed in batch mode (i.e. a sufficiently
long signal duration is used to find an accurate estimate), thus
assuming that the recorded acoustic environment is station-
ary. This assumption is unlikely in acoustic scenarios where
sources may be moving, leaving or entering the scene. More-
over, using several snapshots of the signal of interest can re-
solve magnitude ambiguity for channel identification [4]. If
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these methods are to be used in real-life scenarios, it is es-
sential to investigate their performance and limitations when
moving from batch mode towards frame-based processing.

Two factors are likely to impact the performance of frame-
based PEVD methods: the estimation of the space-time co-
variance matrix using a limited set of samples [10,11], and the
algorithm employed to perform its diagonalisation [12–14].
Algorithmic limitations are conditioned by the nature of the
matrix to factorise, and by internal order reduction mecha-
nisms [15–17]. On the other hand, the unbiased estimation
of sample space-time covariance matrices has closed-form
mathematical expressions for the estimator variance, and it is
possible to compute the optimal time-lag support over which
to estimate the matrix given a limited number of samples and
the ground truth support [10,11]. The estimation error relates
to eigenvalue and eigenvector perturbations when performing
the matrix PEVD [18].

These limitations suggest that the performance of PEVD-
based speech processing methods will be affected by the num-
ber of available samples in the frame-based space-time co-
variance matrix estimation. However, the extent to which
performance is impacted has not yet been established, and it
is unknown how classical covariance matrix estimation meth-
ods [19] would perform for the space-time covariance ma-
trix estimation task. Therefore, this paper proposes an itera-
tive frame-based estimation of the space-time covariance ma-
trix, and aims to quantify its impact on the performance of
the PEVD speech enhancement presented in [1, 2]. Perfor-
mance is first assessed through space-time covariance matrix
estimation accuracy. Then, the characteristics of the derived
PEVD speech-enhancement filters are investigated. Finally,
the impact on noise-reduction and intelligibility improvement
are compared between the proposed method and the batch ap-
proach in [1].

2. PROBLEM FORMULATION

2.1. Signal model

Given M microphones, the noisy speech recorded at the mth

microphone is given by

xm(n) = hT
ms(n) + vm(n) , (1)
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where n is the time index, hm is the acoustic impulse re-
sponse (AIR) between the desired source and the mth micro-
phone, assumed stationary and modelled as an FIR filter of
order J , s(n) = [s(n), . . . , s(n−J)]T is the anechoic speech
signal, vm(n) is additive noise, and [·]T is the transpose op-
erator. The noise signals are assumed to be zero-mean, non-
perfectly coherent with each other, and uncorrelated with the
source signal [20]. Stacking the microphone signals gives

x(n) = HT s(n) + v(n) , (2)

where x(n) = [x1(n), . . . , xM (n)]T with v(n) defined simi-
larly, and H = [h1, . . . ,hM ].

2.2. Sample space-time covariance matrix

The space-time covariance matrix is given by [12]

Rxx(τ) = E[x(n)xH(n− τ)] , (3)

with [·]H defined as the Hermitian transpose operator such
that the (p, q)th element of Rxx(τ) is given by rp,q(τ) =
E[xp(n)x

∗
q(n− τ)], with [·]∗ the complex conjugate operator.

For a white Gaussian source and in the absence of noise, (3)
reduces to [11, 21]

Rxx(τ) =
∑
J

HH(j)H(j − τ) . (4)

In practice, when only N snapshots of x(n) are available such
that n = 0, . . . , N − 1, (3) is estimated from samples and
yields the noisy estimate R̂xx(τ). Assuming stationarity, the
(p, q)th element of R̂xx(τ) is [11]

r̂p,q(τ) =

{
1

N−τ

∑N−τ−1
n=0 xp(n+ τ)x∗

q(n), τ ≥ 0

r̂ ∗
q,p(−τ), τ < 0 .

(5)

The variance of this unbiased estimator was derived in [11]
for Gaussian signals, and was found to vary with the num-
ber of samples, N , and the ground-truth space-time covari-
ance matrix. Given the support, 2T + 1, of R̂xx(τ), such
that R̂xx(τ) = 0 for |τ | > T , truncation errors may arise
when T ≤ τmax, with 2τmax + 1 the ground truth support
of Rxx(τ). The estimation suffers from a tradeoff between
truncation errors and errors due to estimator variance: as T
increases, truncation errors reach zero, while the estimator
variance generally grows [10, 11].

2.3. PEVD-based speech enhancement

The PEVD speech enhancement method in [1] uses the space-
time correlation matrix in (3) to capture signal correlations
in space, time, and frequency. Concatenating the correlation
matrix, Rxx(τ), for all values of τ ∈ {−N + 1, . . . , N − 1},

results in a 3-dimensional tensor. The z-transform of (3) is
given by [12]

Rxx(z) =

∞∑
τ=−∞

Rxx(τ) z
−τ. (6)

The so-obtained polynomial matrix is a matrix with polyno-
mial elements, or equivalently, a polynomial with matrix co-
efficients. The PEVD of (6) is [12]

Rxx(z) ≈ U(z)Λ(z)UP (z), (7)

where U(z) is the eigenvector polynomial matrix and the
diagonal polynomial matrix, Λ(z) contains the eigenvalues,
and [·]P is the para-Hermitian operator such that UP (z) =
UH(1/z∗). The approximation in (7) is due to the use of
iterative algorithms to obtain the decomposition [12–14].
Assuming uncorrelated speech and noise signals, the prin-
cipal eigenvector, u1(z), is associated with the speech-only
subspace, and speech enhancement occurs through [1]

y(z) = uP
1 (z)x(z) . (8)

Details on PEVD speech enhancement are given in [1].

2.4. Batch mode versus frame-based enhancement

When processing the received signal in batch mode as
in [1], the acoustic scene is assumed stationary over all
n ∈ {0, . . . , N − 1}, and N is typically much larger than
the ground truth support τmax. The variance of the estimate
R̂xx(τ) can then be reduced using K signal segments of
length L ≥ τmax, producing the long-term average

R̃xx(τ) =
1

K

K∑
k=1

R̂xkxk(τ) , (9)

where R̂xkxk(τ) is the space-time covariance matrix obtained
following (5) in the kth frame of length L, such that n ∈
{(k − 1)L, . . . , kL − 1}. An optimum support Topt ≤ τmax

can be found to minimise the estimation error [10].
In frame-based processing, however, the scene is only as-

sumed stationary within a frame of length L << τmax. Ap-
proaches must therefore be explored that are able to produce
a reliable estimate of the space-time covariance matrix when
a limited set of signals samples is available in any one frame.
Motivated by the approach for recursive spatial covariance
matrix estimation [22, 23], this paper proposes the following
iterative procedure for the polynomial case

R̂
k

xx(τ) = αR̂
k−1

xx (τ) + (1− α)R̂xkxk(τ) , (10)

where R̂
k

xx(τ) is the space-time covariance matrix estimate
in the kth frame of length L, and α is a recursive smoothing
parameter. Thus, the recursive estimate in the kth frame uses



the recursive estimate up to the (k − 1)th frame, and the in-
stantaneous estimate obtained at the kth frame. Larger values
of α incur longer memory in the system, but limit the amount
by which the estimate can adapt to changing scenarios. Trun-
cation errors are constrained by the frame length L < τmax,
while errors due to estimator variance can be reduced with
increased system memory. Therefore, during stationary peri-
ods, larger values of α should lead to lower steady-state er-
rors. Setting α = 1

k leads to the form in (9) as k = K.
The PEVD decomposition in (7) is performed for every frame
independently, leading to the filters ûk(z) and the enhanced
signal frames ŷk(z).

3. EXPERIMENTS

3.1. Metrics

When employing the procedure in (10), speech enhancement
performance is likely to be affected by the covariance ma-
trix estimation accuracy and the resulting filters ûk

1(z). The
element-wise normalised projection misalignment (NPM) be-
tween R̂xx(τ) and Rxx(τ) is used to quantify the space-time
covariance matrix estimation error, such that [24]

NPM(p,q) = 10 log
( |r(p,q) − βr̂(p,q)|2

|r(p,q)|2
)
, β =

rH(p,q)r̂(p,q)

|r̂(p,q)|2
,

where r(p,q) = [r(p,q)(−τmax), . . . , r(p,q)(τmax)]
T and r̂(p,q)

defined similarly, and | · | is the Euclidean norm. The aggre-
gated NPM is then obtained by summing over all matrix el-
ements, and it provides a gain invariant distance between the
two space-time covariance matrices.

Filter characteristics are described by the beampattern
B(φ, ejΩ) and the directivity index (DI) defined herein as [25]

B(φ, ejΩ) = u1
H(ejΩ)d(φ, ejΩ) (11)

DI =
1

4π

∫ 2π

Ω=0

( B(φ0, e
jΩ)∫ 2π

φ=0
B(φ, ejΩ)dφ

)
dΩ , (12)

with Ω the discrete angular frequency, d(φ, ejΩ) the direct-
path plane-wave array manifold for a source originating at an
azimuth φ, and φ0 is the target source azimuth direction.

Finally, the frequency-weighted segmental SNR [26, 27]
is computed to measure denoising performance, while STOI
[28] is used to predict the speech intelligibility.

3.2. Setup

Simulations consider a linear array of M = 3 microphones
spaced by 5 cm, receiving a source placed 1 m away along the
array’s axis and corresponding to an azimuth direction of 90°.
The sampling rate is 16 kHz. Room impulse responses (RIRs)
are simulated using the generator in [29] for a 4× 4× 3 room
with reverberation time T60 = 400 ms. For the recursive
analysis, non-overlapping frames of the signal are taken using
a rectangular window of length L.

(a) L = 20 ms (b) L = 40 ms

Fig. 1: Aggregated NPM between R̂
k

xx(τ) and Rxx(τ) as a
function of time, for various α and L = {20, 40} ms.
3.3. Experiment 1: Estimation accuracy

This experiment uses a 10 s segment of white Gaussian noise
as the recorded source, such that the ground truth Rxx(τ) can
be computed according to (4). The performance of the space-
time covariance matrix estimation in (10) is measured using
the aggregated NPM as a function of time, for various frame
lengths L and smoothing factors α. Results are plotted in Fig.
1 for 200 realisations of the source and for L = {20, 40} ms.

Results show that lower values of α lead to faster con-
vergence of the estimate, but also yield a higher steady-state
error than large values of α. This is expected, as large values
of α incur longer memory in the system such that more frames
are used in the estimate, thus reducing its error. Additionally,
Fig. 1(b) shows that using longer frame lengths L also lead
to a lower steady-state error. This is due to reduced trunca-
tion errors in the estimate, as explained in Sec. 2.2. Doubling
the frame length L also doubles the convergence time of es-
timates, such that convergence in frame number is constant.
The mean aggregated NPM between the long-term estimate
R̃xx(τ) in (5) and the ground truth was -79.09 dB.

3.4. Experiment 2: Impact on speech enhancement

This experiment evaluates the performance of the frame-
based space-time covariance matrix for use in PEVD speech
enhancement. The considered source is an IEEE sentence
[30] recorded by a male native British English speaker, cor-
rupted by spherical isotropic speech-shaped noise simulated
using [31] at 0 dB SNR [27,32]. Performance in this scenario
can no longer be compared against a ground-truth matrix,
as the recorded signal is no longer white Gaussian. Instead,

this section compares the estimation accuracy of R̂
k

xx(τ) in
(10) against the long-term estimate R̃xx(τ) in (5), and sub-
sequently, the beampattern accuracy of ûk

1(z) against ũ1(z).

Fig. 2 shows the aggregated NPM between R̂
k

xx(τ) and
R̃xx(τ), and the directivity index error between ûk

1(z) and
ũ1(z) as a function of time, for various values of α and for
L = 40 ms. The target speech signal s[n] and the diffuse
noise recorded at one microphone v[n] are also shown to pro-
vide context to the analysis.
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Fig. 2: Aggregated NPM and directivity index error between frame-based (L = 40 ms) and long-term (L = 100 ms) estimates
of the space-time covariance matrix and resulting speech-enhancement filter, for various values of α.

Fig. 3: Beampattern examples for the scenario in Sec. 3.4.
(a): Long-term averaged ũ1(τ). (b), (c), (d): ûk

1(τ) with
α = 0.9 and at t = {1, 1.84, 3} s.

For all α, the aggregated NPM drops with speech onset
at 0.4 s, meaning the iterative estimates are close to the long-
term average. For low values of α, the aggregated NPM fluc-
tuates with speech activity. For example for α = 0.5, the
NPM increases at t = 1.5 s simultaneously with speech de-
cay, but at t = 1.7 s the NPM drops as speech resumes. As the
value of α increases, the NPM is less sensitive to changes in
speech and varies slowly over time. For α = 0.99, this leads
to a higher steady-state aggregated NPM than α = 0.975, as
the NPM is less affected by the initial speech onset.

The directivity index error between ûk
1(z) and ũ1(z) is

close to 0 dB for all α and at every time index. However,
spurious error peaks occur at various time indices and for a
few values of α. To investigate this behaviour, Fig. 3 shows
the beampatterns of ũ1(z) and snapshots of ûk

1(z) with α =
0.9 and for time indices t = [1, 1.84, 3] s. Full animations can
be found in [33]. All four beampatterns show beams steered
to the target source direction at 90°. The snapshots at t =
1 s and t = 3 s exhibit very similar behaviours regardless of

Table 1: SNR and STOI improvements of the proposed
method compared to the batch method in [1].

α 0.50 0.80 0.90 0.95 0.975 0.99
∆SNR [dB] 1.29 1.28 1.18 1.08 0.80 0.49
∆STOI 0.01 0.03 0.02 0.01 0.02 0.02

the fact that their corresponding aggregated NPMs are around
−80 dB and −40 dB. Therefore, a large difference in space-
time covariance matrix estimation does not necessarily lead
to a large difference in PEVD filters for speech enhancement.
Moreover, the snapshot at t = 1.84 s corresponds to a peak in
DI error – it can be seen that the beam is steered in the correct
direction but there is larger leakage to other azimuths. This
implies that this suboptimal filter is still capable of retaining
the source coming from the target direction, but might have
reduced noise reduction capabilities.

Finally, the impact of the frame-based PEVD enhance-
ment on speech enhancement metrics is investigated in Table
1, where ∆SNR and ∆STOI denote the difference in SNR
and STOI scores between ŷ(z) and the long-term average sig-
nal ỹ(z), for various values of α. The table shows around
1 dB SNR improvement of the frame-based method over the
classical PEVD enhancement, while STOI scores are broadly
unaffected. The improvement in SNR is likely due to better
noise reduction in noise-only frames.

4. CONCLUSION

This paper introduced a frame-based space-time covariance
matrix estimation method for application to PEVD-based
speech enhancement. The estimation procedure was found
to converge to ground truth matrices, within at least −20 dB
aggregated NPM. An experiment with speech enhancement
showed that the frame-based method not only could in prin-
ciple adapt to non-stationary acoustic scenarios, but it also
yielded filters and enhancement measures similar to or better
than the batch estimation in [1], thus opening the possibility
to investigate real-time PEVD-based speech enhancement.
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