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ABSTRACT
Array processing is widely used in many speech applications involv-
ing multiple microphones. These applications include automatic
speech recognition, robot audition, telecommunications, and hear-
ing aids. A spatio-temporal filter for the array allows signals from
different microphones to be combined desirably to improve the ap-
plication performance. This paper will analyze and visually interpret
the eigenvector beamformers designed by the polynomial eigenvalue
decomposition (PEVD) algorithm, which are suited for arbitrary ar-
rays. The proposed fixed PEVD beamformers are lightweight, with
an average filter length of 114 and perform comparably to classical
data-dependent minimum variance distortionless response (MVDR)
and linearly constrained minimum variance (LCMV) beamformers
for the separation of sources closely spaced by 5 degrees.

Index Terms— polynomial eigenvalue decomposition, micro-
phone arrays, fixed beamformers, MVDR, LCMV

1. INTRODUCTION

Array processing is widely used in many speech applications in-
volving multiple microphones. These applications include automatic
speech recognition [1], robot audition [2], telecommunications and
hearing aids [3]. Beamforming, or the design of a spatio-temporal
filter for the array, combines signals from different microphones to
extract the desired signal arriving from a specific direction [4]. Pro-
cessing these extracted signals instead of the microphone signals
usually improves the application performance.

The beamformer can be designed to be fixed or adaptive [5, 6].
In fixed or data-independent designs, the array can have a specific
spatial response by proper selection of the filter weights. Although
fixed beamformers are limited in dynamic acoustical environments,
they are still in use due to their simplicity, effectiveness and low
complexity [1, 7], which is particularly important for on-device pro-
cessing with limited power and computation.

Data-dependent or adaptive beamformers rely on the statisti-
cal properties of the signals [8]. They can be designed to adapt to
time-changing acoustical environments based on statistically opti-
mal criteria such as maximum signal to noise ratio (SNR), minimum
mean-square error (MMSE) and linearly constrained minimum vari-
ance (LCMV) [9, 10]. These have led to well-known beamformers
such as the multi-channel Wiener filter (MWF) [11, 12], minimum
variance distortionless response (MVDR) [5,13,14] and generalized
sidelobe canceller (GSC) [15, 16]. In most approaches, the micro-
phone signals are usually processed in the short-time Fourier trans-
form domain. However, this approach divides the broadband speech
into multiple narrowband signals, thus ignoring the correlation be-
tween different DFT bins and phase coherence across bands [17].
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An alternative approach can be formulated in the z-domain us-
ing polynomial matrices computed from the microphone signals.
Polynomial matrices can simultaneously capture the space, time and
frequency correlations and are suitable for modelling multi-channel
broadband signals. The polynomial matrices are processed using an
iterative polynomial matrix eigenvalue decomposition (PEVD) algo-
rithm such as second-order sequential best rotation (SBR2) [18, 19]
and sequential matrix diagonalization (SMD) [20, 21] in the time-
domain or [22] in the frequency-domain. PEVD algorithms have
been found useful for speech enhancement [23, 24], source separa-
tion [25, 26], source localization [27, 28] and channel coding [29].

In [30, 31], polynomial MVDR and GSC have been developed
by formulating and solving the well-known optimization problem in
the z-domain using polynomial matrix techniques. In this paper, we
will investigate fixed beamformers designed by PEVD for arbitrary
arrays. During training, the learnt PEVD filterbanks are stored in a
look-up table, and the entries are later retrieved and used directly for
testing. The novel contributions of this paper are (i) an analysis of
the fixed beamformer design using PEVD, (ii) a visual interpretation
of the eigenvectors generated by the PEVD, and (iii) a comparison of
the proposed approach with the classical MVDR and LCMV beam-
formers in noisy reverberant environments.

2. PROBLEM FORMULATION

2.1. Signal Model

The received signal at the q-th microphone for sample index n is

xq(n) =

P∑
p=1

hp,q(n) ∗ sp(n) + vq(n) , (1)

where hp,q(n) represents the time-invariant room impulse response
(RIR) from the p-th source to the q-th microphone, sp(n) is the p-
th source signal, vq(n) represents the additive noise at the q-th mi-
crophone, and ∗ denotes the linear convolution operator. The noise
signals are assumed to be zero-mean, uncorrelated with each other
and the source signals. The data vector over Q microphones is
x(n) = [x1(n), . . . , xQ(n)]

T ∈ RQ, where [·]T is the transpose
operator.

2.2. Polynomial Matrix Eigenvalue Decomposition

The space-time covariance matrix [18, 32], parameterized by time
lag τ ∈ Z, is computed using

R(τ) = E{x(n)xT (n− τ)} , (2)

where E{·} is the expectation operator over n. Each element,
rp,q(τ), is the correlation sequence between the p-th and q-th micro-
phone signals. This produces auto- and cross-correlation sequences
on the diagonals and off-diagonals, respectively.

978-1-6654-6867-1/22/$31.00 ©2022 IEEE

https://orcid.org/0000-0003-0731-2157
https://orcid.org/0000-0002-6105-6011
https://orcid.org/0000-0001-8911-1601
https://orcid.org/0000-0001-8546-8013


The z-transform of (2),

R(z) =

∞∑
τ=−∞

R(τ)z−τ , (3)

denoted by R(τ)� R(z), is a para-Hermitian polynomial matrix
satisfying R(z) = RP (z) = RH(1/z∗), where [·]∗, [·]H , [·]P are
the complex conjugate, Hermitian and para-Hermitian operators re-
spectively. The para-Hermitian eigenvalue decomposition (EVD) of
R(z) ∈ CQ×Q in (3) is [32, 33]

R(z) = U(z)Λ(z)UP (z) , (4)

where the columns of U(z) ∈ CQ×Q are the polynomial eigenvec-
tors and the elements on the diagonal matrix Λ(z) ∈ CQ×Q are
the polynomial eigenvalues. Iterative PEVD algorithms based on
the SBR2 [18, 19] and SMD [20, 21] are used to approximate (4) by
Laurent polynomial factors. Diagonalization of (4) is achieved using

Λ(z) = U
P (z)R(z)U(z) . (5)

3. BEAMFORMER DESIGNS USING POLYNOMIAL EVD

3.1. Polynomial Eigenvector Beamformer Design

In most applications involving physical signals, there is often cou-
pling in space, time and frequency because of the wave equation [9],
motivating the need for a decoupling approach such as the PEVD.
The eigenvector U(z) performs a filter-and-sum operation on the mi-
crophone inputs to generate strongly decorrelated signals, i.e., output
signals are not spatially correlated over a range of time lags.

The acoustic channel in (1) can be more compactly represented
by H(n)� H(z), where each element is hp,q(n). As the sources
propagate through the acoustic channels, the space-time polynomial
matrix of the microphone signals, corrupted by spatially and tempo-
rally uncorrelated noise with equal power σ2

v , is

Rx(z) = H
P (z)Rs(z)H(z) + σ2

vI , (6)

where Rx(z) and Rs(z) are the space-time covariance matrices of
the microphone and source signals, and I is the identity matrix.

Consider the case when source signals are generated by uncorre-
lated, zero-mean unit variance Gaussian processes gp(n) ∈ N(0, 1)
with the following cross-correlation sequence

rm,l(τ) = E{gm(n)gl(n− τ)} = δ(m− l)δ(τ) . (7)

This implies that Rs(z) = I. Further, assume that sources satisfy
spectral majorization such that [21, 29]

γgm−1(e
jΩ) ≥ γgm(ejΩ) ∀Ω, m = 2, . . . , P , (8)

where γgm(ejΩ) is the power spectral density of gm(n). Applying
the PEVD and rearranging, (6) becomes

Λ(z)− σ2
vI = U

P (z)HP (z)H(z)U(z) . (9)

This implies that the right hand side term in (9) must also achieve
diagonalization, indicating that UP (z) might decorrelate H(z). The
eigenvector filterbank generated by the iterative PEVD algorithms
satisfy the para-unitary or lossless condition [34] such that

U
P (z)U(z) = U(z)UP (z) = I . (10)

The first consequence of (10) implies that U(z) cannot change the
total power over the subspaces but can only redistribute spectral
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Fig. 1: Experiment setup and trained filterbank lengths.

power among the microphones [18, 23]. This gives U(z) a stable
and all-pass characteristic [18]. The second is the orthogonality such
that the inner product between different columns of U(z) equals 0.

For this choice of source signals, i.e. white Gaussian, the PEVD
filterbank is designed to primarily target only the acoustic channels.
With a different selection of source signals, another set of U(z) will
be generated to jointly decorrelate in space, time and frequency.

3.2. Broadband Steering Vectors and Beam Patterns

To understand the spatio-spectral processing of the designed beam-
former, the response of the array to a plane wave is computed in
Section 4. The broadband steering vector, which implements frac-
tional delays, is defined as [35]

aϕ(z) = [1, a2(z), . . . , aQ(z)]
T , (11)

where aq(z) =
∑

n aq(n)z
−n, aq(n) = sinc(nTs − ∆τq), ∆τq

is the time delay from the source to the q-th microphone relative
to the first reference microphone and Ts is the sampling period.
The time delays are embedded in the angles of arrival ϕ and can
be modelled explicitly using the array geometry [27]. In particu-
lar, a narrowband source signal with frequency Ω0 arriving at the
array is ejΩ0nTsaϕ(Ω0), where aϕ(Ω0) = [1, . . . , e−jΩ0∆τQ ]T is
expressed in terms of phase shifts from the reference microphone.

The broadband array response can be computed using

B(ϕ, z) = U
P (z)aϕ(z) . (12)

The array response at frequency Ω can be obtained by evaluating
(12) on the unit circle such that

B(ϕ,Ω) = B(ϕ, z)|z=ejΩ . (13)

It is also common to reparameterize ϕ in (13) using wavenumber k
for a more general representation. In this case, (13) is termed as the
frequency-wavenumber response function [9]. In this paper, only the
azimuth angle ϕ is considered, and (13) will be sufficient but this can
straightforwardly be extended to consider the general case.

4. SIMULATION AND RESULTS

4.1. Setup and Evaluation Metrics

Spatially and temporally white Gaussian noise was used as the
source signals for training the filterbanks and simulating sensor
noise. Pink noise from the Noisex database [36] was also used
for training. Anechoic speech signals sampled at 16 kHz were taken
from the TIMIT corpus [37]. For each speaker, short utterances were
concatenated to generate signals of 8 to 10 s. During both training



(a) PEVD filterbank for {45◦, 50◦}. (b) MVDR beamformers. (c) LCMV beamformers.

Fig. 2: Comparison of beamformers trained on two white, uncorrelated noise sources positioned at ϕ = {45◦, 50◦}.

and testing, each source signal was convolved with the RIRs and
summed before adding 30 dB SNR sensor noise.

Anechoic RIRs were simulated using [38] for a single source lo-
cated at different angular positions 0◦ ≤ ϕ < 360◦ in steps of 5◦

relative to the x-axis in Fig. 1, which shows a Q = 4 free-field hear-
ing aid array. Different combinations of P = 2 sources at positions
(ϕi, ϕj), i ̸= j, and the SMD algorithm [21] were used to train the
fixed beamformers. To guarantee spectral majorization in (8) so that
the PEVD outputs are ordered in a desired sequence as explained in
Section 3.1, the signal power of source S1 at ϕi was 10 dB higher
than S2 at ϕj . When both sources are white Gaussian, the filter-
bank has been designed to primarily target the acoustic channel, as
explained in Section 3.1. For each azimuth pair, the learnt PEVD
filterbank was stored in a look-up table, the entries of which were
later retrieved and directly used for testing.

During testing, the setup is shown in Fig. 1(a) where S1 and S2
were positioned at ϕ1 = 45◦ and ϕ2 = 50◦ from the x-axis, 2 m
from the hearing aid array. The speech sources were adjusted to the
same power levels at the source positions using [39] implemented
in [40]. RIRs for a 5 m × 4 m × 6 m room with a reverberation time
of 300 ms were generated using [41]. For performance evaluation,
short-time objective intelligibility (STOI) [42] and signal to interfer-
ence ratio (SIR) [43] are used to measure speech intelligibility and
interference rejection. Although each PEVD filterbank consists of 4
beamformers, results for only the first 2 are presented for brevity.

4.2. Experiments and Discussions

4.2.1. Experiment 1: Beam Patterns for White Noise Sources

Two white noise sources are spaced 5◦ apart, and the first source is
10 dB higher in power than the second source. The PEVD beam-
formers are trained on these signals for different source angles. The
minimum, maximum and mean lengths of the filters are 17, 372 and
114, respectively with the histogram shown in Fig. 1(b).

The beam patterns for the PEVD beamformers are shown in
Fig. 2(a). The first output in Fig. 2(a)(i) has a response that resembles
a delay-and-sum beamformer, with unit gain in the look direction
ϕ1 = 45◦ for all frequencies. This is expected since the SMD algo-
rithm [21] uses a series of delays to maximize the auto-correlation
sequences on the diagonal eigenvalue polynomial matrix while en-
forcing an ordering from the largest to smallest energy. The second
output in Fig. 2(a)(ii) shows a deep null steered in the direction of
the first source position at ϕ1 = 45◦ across all frequencies. The first
and second beamformers also exhibit orthogonality characteristics in
space and z-domain, e.g., unit gain and a null at ϕ1 = 45◦ for PEVD
beamformers 1 and 2, respectively.

For reference, MVDR and LCMV beamformers for {45◦, 50◦}
are also presented in Fig. 2(b) and (c). The beamformer weights are
calculated using the statistics estimated from the received signals in
the array and processed using [44]. The ground truth steering vectors
are provided to ensure unit gain in the look directions as shown in
Fig. 2(b). For the LCMV, hard constraints, i.e., unit gain in the target
direction and zero gain in the interferer direction for all frequencies,
are used to generate the beam patterns in Fig. 2(c). Compared to
the second LCMV in Fig. 2(c)(ii), the second PEVD beamformer in
Fig. 2(a)(ii) has additionally provided some attenuation around the
low frequencies near the null direction ϕ1 = 45◦. Note that this
direction has unit gain for the first beamformer in Fig. 2(a)(i).

4.2.2. Experiment 2: Separation of Speech Sources

In this experiment, the source signals are two male speakers of the
same signal power at their respective positions. The previously
trained PEVD filterbank for white sources located at {45◦, 50◦}
shown in Fig. 2(a) is used for this experiment without any mod-
ifications. The beamformer weights for MVDR and LCMV are
calculated using the statistics estimated from the received signals in
the array while the ground truth steering vectors are provided.

The beam patterns for the MVDR and LCMV are provided in
Fig. 3(b) and (c), respectively. The PEVD beamformer trained on
white noise signals in Fig. 2(a)(ii) has a beam pattern that resembles
the second LCMV beamformer in Fig. 3(c)(ii) — both impose null
constraints on ϕ1 = 45◦ except for the low frequency attenuation
provided by PEVD in the neighbourhood of the ϕ1 = 45◦.

The source separation results for an anechoic environment are
shown in Table 1. In the PEVD filterbanks designed for {ϕi, ϕj},
the first beamformer behaves like a delay-and-sum steered towards
ϕi while the second beamformer behaves like a cancellation or spa-
tial filter nulling signals arriving from ϕi. Consequently, the PEVD
cancellation beamformers performs the best in STOI and even out-

Table 1: Source separation for an anechoic environment. PEVD and
PEVD′ are trained on 2 white, and 1 white and 1 pink sources.

S1 (ϕ1 = 45◦) S2 (ϕ2 = 50◦)
Algorithm STOI SIR (dB) STOI SIR (dB)
Received 0.809 0.240 0.640 - 0.358

PEVD {45◦, 50◦} 0.811 0.206 0.844 15.394
PEVD {50◦, 45◦} 0.932 16.943 0.644 - 0.111

MVDR 0.922 13.727 0.826 12.077
LCMV 0.856 20.226 0.796 23.164

PEVD′ {45◦, 50◦} 0.806 0.195 0.369 11.953
PEVD′ {50◦, 45◦} 0.366 12.392 0.636 - 0.109



(a) PEVD′ {45◦, 50◦} trained on white and pink noise. (b) MVDR beamformers. (c) LCMV beamformers.

Fig. 3: Comparison of beamformers applied to the two talkers positioned at ϕ = {45◦, 50◦} for an anechoic scenario.

perform MVDR by 0.018 for S2. In terms of SIR, the PEVD cancel-
lation filters performs better than MVDR by more than 3 dB but not
as well as LCMV beamformers which places deep notch at the inter-
ferer direction. However, PEVD cancellation beamformers performs
better than LCMV in STOI by up to 0.15.

The results for a room with a T60 of 300 ms is shown in Table 2.
In this case, the fixed beamformers designed by PEVD are used di-
rectly. The PEVD{50◦, 45◦} cancellation beamformer that extracts
S1 at ϕ = 45◦ gives the most significant improvement in STOI and
SIR simultaneously. The other PEVD beamformers do not gener-
ally worsen STOI and SIR scores as much as MVDR and LCMV.
Although the ground truth steering vectors are provided, the estima-
tion of signal statistics using the microphone signals rather than the
ground truth noise covariance matrices makes the beamformers per-
form more like the minimum power distortionless response (MPDR)
and linearly constrained minimum power (LCMP), respectively. The
beam patterns for the reverberant room are also provided [45].

4.2.3. Experiment 3: Different Source Signals for Training

A pink, instead of the white, noise signal is used as the source S2
for training and this trained PEVD filterbank is denoted by PEVD′.
Compared to PEVD in Fig. 2(a), the spatio-spectral characteristics
of PEVD′ in Fig. 3(a) are less smooth. The source separation results
in Table 1 show that PEVD beamformers which are trained on white
noise signals targeting spatial separation perform better than PEVD′.
This suggests that using pink noise for training may not be suited for
the separation of speakers because (8) may no longer be guaranteed.

5. CONCLUSION

We have proposed a fixed beamformer design using PEVD. Depend-
ing on the source signals used for training, the PEVD can design
spatially, and possibly spectrally, orthogonal filterbanks for arbitrary
arrays. We have utilized the array geometry information and intro-
duced beam pattern analysis to interpret the eigenvector filterbanks
generated by PEVD. For the separation of two source signals, anal-
ysis of the beam patterns has shown that the first and second beam-
formers behave like delay-and-sum and cancellation filterbanks, re-
spectively. The fixed PEVD filterbanks are lightweight, with an av-
erage filter length of 114 and perform as well as, if not better than,
data-dependent MVDR and LCMV beamformers even for closely
spaced sources (5◦). Informal listening examples are available [45].
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