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Abstract—Speech enhancement is important for applications
such as telecommunications, hearing aids, automatic speech
recognition and voice-controlled systems. Enhancement algo-
rithms aim to reduce interfering noise and reverberation while
minimizing any speech distortion. In this work for speech
enhancement, we propose to use polynomial matrices to model
the spatial, spectral and temporal correlations between the
speech signals received by a microphone array and polynomial
matrix eigenvalue decomposition (PEVD) to decorrelate in space,
time and frequency simultaneously. We then propose a blind
and unsupervised PEVD-based speech enhancement algorithm.
Simulations and informal listening examples involving diverse
reverberant and noisy environments have shown that our method
can jointly suppress noise and reverberation, thereby achieving
speech enhancement without introducing processing artefacts
into the enhanced signal.

Index Terms—Broadband multi-channel signal processing,
noise reduction, polynomial matrix eigenvalue decomposition,
speech dereverberation, speech enhancement.

I. INTRODUCTION

THE enhancement of degraded speech signals remains
important in many applications ranging from human-to-

human communications in telecommunications and hearing
aids [1]–[3] to human-to-machine interaction in automatic
speech recognition, voice-controlled systems and robot audi-
tion [4], [5]. The main causes of degradation are additive back-
ground noise and reverberation due to multi-path reflections in
enclosed spaces [6]. Consequently, the speech signal becomes
temporally smeared and contaminated by interfering signals.
Furthermore, in all these applications, prior information of
the target speech or the acoustic environment is not available,
motivating the need for a blind, or unsupervised, approach.

The speech enhancement task which includes noise reduc-
tion [7] and dereverberation [8] will be addressed in this
paper. Existing enhancement algorithms may typically distort
the speech signal and introduce processing artefacts [9]–[11].
Methods for controlling the trade-off between noise reduc-
tion against speech distortions are introduced in [12]–[14].
For instance, aggressive noise reduction might be preferred
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for human-to-machine applications while mobile phone and
hearing aid users might prefer less speech distortion at the
expense of higher residual noise.

Existing noise reduction techniques can be classified into
single- and multi-channel techniques. Methods for single-
channel noise reduction include spectral subtraction [15], [16],
statistical-based and subspace-based approaches. Statistical
methods are typically based on minimizing the mean-square
error (MMSE) of the clean and estimated speech spectrum
[12], the log-spectrum (log-MMSE) [17] or the single-channel
Wiener filter [13], [18].

In subspace methods, noisy signals are decomposed into
signal and noise subspaces and enhancement is achieved by
recovering the speech signal from the signal subspace. The
Karhunen-Loève transform (KLT) was used in [19] and an
optimal solution was derived for white noise. This work was
extended in [20] to cope with coloured noise by using a gener-
alized eigenvalue decomposition (GEVD) to jointly diagonal-
ize the speech and noise covariance matrices. Subspace-based
methods have also been extended to multi-channel systems
[21], [22] but they do not fully exploit spatial information to
minimize speech distortion [7], as will be seen in Section VI.

Multi-microphone methods include beamformers [23]–[25]
with optional post-filtering [26], [27], the optimal multi-
channel Wiener filter (MWF) [13], [18], [28] and the multi-
channel Kalman filter [29], [30]. While existing multi-channel
approaches may potentially achieve noise reduction without
speech distortion when the noise is spatially and temporally
white, this remains a practical challenge under other noise
conditions in real-world scenarios [7].

Speech dereverberation approaches can be classified into
speech synthesis-based, reverberation cancellation and rever-
beration suppression methods. In synthesis-based methods, the
linear prediction coding (LPC) residual is directly computed
to generate an estimated clean speech signal [31], [32]. This
approach, however, is usually limited to mildly reverberant
signals in order to avoid introducing artefacts [33].

In one class of reverberation cancellation approaches, the
acoustic channel is first estimated using, for example, blind
system identification [34]–[37]. The estimated channel is then
used in the design of inverse filter(s), such as [38] for a single-
channel system and [39] for a multi-channel system based
on the multi-channel inversion theorem (MINT). Because
MINT is not robust to estimation errors, channel shortening
techniques have been proposed [40]–[42]. In another class of
cancellation methods, multi-channel linear prediction, such as
the weighted prediction error (WPE) [43]–[45], is used to
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directly estimate the dereverberated speech signal.
The reverberation suppression methods include single-

channel spectral subtraction [46] and multi-channel spatial
filtering techniques such as the MWF [13], [18], which may
be used in conjunction with post-filtering techniques [27].
Because these methods use noise and/or transfer function
estimators, the dereverberation effectiveness depends heavily
on the performance of these estimators.

A large number of contributions are based on the assumption
of narrowband signal models, e.g., [19]–[22]. Single-channel
approaches exploit temporal correlations while multi-channel
approaches capture spatio-temporal correlations. However, ex-
tensions to broadband signals using the short-time Fourier
transform (STFT) ignores the correlations between frequency
bands and cannot preserve phase coherence across bands [47].
Furthermore, the microphone outputs are temporally corre-
lated because of the speech source signal and reverberation.
Consequently, an eigenvalue decomposition (EVD) or KLT,
which removes correlations at a single time lag, is inadequate
in decorrelating the signals completely. Polynomial matrices
can simultaneously capture the correlations in space, time and
frequency and are, therefore, appropriate for modelling multi-
channel broadband signals.

The processing of polynomial matrices has motivated the
development of a family of polynomial matrix eigenvalue
decomposition (PEVD) algorithms [48]–[50], which are based
on the second-order sequential best rotation (SBR2) [51].
Unlike EVD or KLT, PEVD can achieve decorrelation over
a suitably chosen range of time lags and is more suitable
for broadband signals. It is also widely used in many multi-
channel broadband signal processing applications such as blind
source separation [52], source identification [53], localization
[54], adaptive beamforming [55] and channel coding [56].

In this work, we introduce and extend PEVD to the field
of speech signal processing and propose a blind and unsu-
pervised PEVD-based speech enhancement algorithm. Prelim-
inary studies separately focused on the task of noise reduction
[57], [58] and speech dereverberation [59]. In contrast, in
this paper, we present PEVD-based speech enhancement for
both noise reduction and dereverberation. In addition, we
further investigate the impact of the parameter settings of the
proposed algorithm and provide a thorough performance eval-
uation in different acoustic conditions, benchmarked against
state-of-the-art baseline approaches for speech enhancement.
Therefore, in supplement to the earlier studies, the novel
contributions of this paper are (i) the use of a polynomial
matrix as a broadband, multi-channel signal model for speech,
(ii) presentation of a novel PEVD-based speech enhancement
algorithm, (iii) the investigation of the parameters of the pro-
posed algorithm, (iv) a comprehensive evaluation and analysis
of the proposed approach for realistic signals under wide-range
of noise and reverberation conditions, and (v) an evaluation of
our PEVD method against several comparative approaches.

II. SPEECH ENHANCEMENT PROBLEM FORMULATION

The noisy and reverberant signal, xm(n), at the m-th
microphone for discrete-time sample n = 0, 1, . . . , N is

xm(n)=hTms0(n) + vm(n) (1)

where s0(n) =
[
s0(n), . . . , s0(n− J)

]T
, is the anechoic

speech, hm is the acoustic channel impulse response from
the source to the m-th microphone, assumed to be stationary
and modelled using a J-th order finite impulse response
(FIR) filter, vm(n) represents the additive noise at the m-th
microphone and [·]T denotes the transpose operator. The noise
signals are assumed to be zero-mean, not perfectly coherent
with each other and uncorrelated with the source signal [7].

Using the reverberation model in [6], the early reflections
represent closely spaced distinct echoes that perceptually re-
inforce the direct-path component and may improve speech
intelligibility in certain conditions [60]. The late reflections
comprise randomly distributed small amplitude components,
which are commonly assumed uncorrelated with the direct-
path and early reflections, and can be treated as an additive,
uncorrelated noise component [61]. Consequently, (1) becomes

xm(n) = hTm,ds0(n) + hTm,es0(n) + xm,l(n) + vm(n)

= s̃m(n) + ṽm(n), (2)

where hm,d and hm,e are the impulse responses associated
with the direct-path and early reflections, xm,l(n) is the late
reverberant component, s̃m(n) = hTm,ds0(n) + hTm,es0(n)
and ṽm(n) = xm,l(n) + vm(n) are the desired speech and
unwanted noise at the m-th microphone. The data vector from
M microphones is x(n) = [x1(n), . . . , xM (n)]T , with s(n),
s̃(n), v(n) and ṽ(n) similarly defined.

A. Noise Reduction in Anechoic Environment

Without reverberation, each acoustic channel only com-
prises the direct-path propagation, modelled using a delay.
Typically, the first channel, or the channel with the shortest
propagation time from the source, can be taken as the refer-
ence. Consequently, (1) simplifies to

xm(n) = sm(n) + vm(n), (3)

where sm(n) is an attenuated and delayed version of s0(n) at
the m-th microphone. The goal of noise reduction is to recover
s(n) from x(n) while keeping v(n) suppressed.

B. Speech Dereverberation in Noiseless Environment

In the absence of additive noise, (1) simplifies to

xm(n) = hTms0(n), (4)

since vm(n) = 0. While retaining the early reflections is not
normally perceived to be perceptually harmful, in this paper,
the evaluation of dereverberation targets the anechoic speech,
s0(n). Furthermore, if noise is present in the environment,
residual additive noise after processing may remain but is not
considered in the dereverberation evaluation.

III. POLYNOMIAL MATRIX DECOMPOSITION

A. Motivation for Polynomial Matrices

Broadband signals received by microphone arrays exhibit
spatial, spectral and temporal correlations. The space-time
covariance matrix is defined as [51]

Rxx(τ) = E{x(n)xH(n− τ)}, (5)
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where E{·} and [·]H are the expectation and Hermitian trans-
pose, respectively. The (p, q)th element of Rxx(τ), rp,q(τ) =
E{xp(n)x∗q(n−τ)}, is computed using the correlation function
between the received signal at the p-th and q-th microphone
and is parameterized by the temporal lag, τ , and [·]∗ is the
complex conjugate operator.

If the source, s0(n), is a narrowband signal at frequency
f0 propagating in an anechoic environment, xm(n) is related
to the reference signal at the first microphone, x1(n), by a
constant phase shift, φm = 2πf0τm. The data vector becomes
x(n) = [x1(n), x1(n)e−jφ2 , . . . , x1(n)e−jφM ]T , such that the
correlation between the (p, q)th sensor pair is

rp,q(τ) = E{x1(n)e−jφp [x1(n− τ)e−jφq ]∗}
= E{x1(n)x1(n)}e−jφp,q+j2πf0τ , (6)

where φp,q = φp − φq is the phase difference that depends
only on the array geometry and is associated with the time
difference of arrival (TDoA). Since the expectation term in
(6) is independent of τ and the array geometry is fixed, φp,q
remains constant across all lags and (6) can be computed at any
τ for decorrelation using an EVD. Classical subspace-based
approaches for the enhancement of narrowband signals com-
pute the instantaneous spatial covariance matrix by evaluating
(5) at τ = 0, expressed as

Rxx(0) = E{x(n)xH(n)}. (7)

However, for a broadband source signal like speech, the
expectation term in (6) no longer holds since the source
correlation now depends on τ . Therefore, correlations across
different sensors and temporal lags need to be considered.
Accordingly, concatenating the covariance matrix, Rxx(τ),
for all values of τ ∈ {−N, . . . , N}, results in a tensor of
dimension, M ×M × (2N + 1).

Instead of processing signals in the STFT domain, the z-
transform which captures and preserves the correlations of the
received signals in space, time and frequency is used. The
z-transform of (5) is a para-Hermitian polynomial matrix [51]

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ . (8)

The polynomial matrix is a matrix with polynomial elements,
or equivalently, a polynomial with matrix coefficients. In the
former, each element in the polynomial matrix represents the
correlation function in z between a specific microphone pair.
In the latter, the polynomial matrix shows how the spatial
correlation between all sensor pairs changes with z.

B. Family of PEVD Algorithms

The PEVD of a para-Hermitian polynomial matrix is [51]

Rxx(z) ≈ UP (z)Λ(z)U(z), (9)

where the rows of U(z) are the eigenvectors and the diagonal
polynomial matrix, Λ(z) contains the eigenvalues, and [·]P is
the para-Hermitian operator such that UP (z) = UH(1/z∗).
The prefix ‘para’ indicates a time-reversal. The approximation
in (9) arises because an exact PEVD is only possible with

infinite polynomial order, as described in [51]. Although exact
diagonalization of Λ(z) is unachievable using only FIR filters,
diagonalization can be attained to a good approximation for
sufficiently large order of filters or polynomial elements [62].

The PEVD can be computed using an iterative algorithm
[48]–[51] based on similarity transforms involving L para-
unitary polynomial matrices [63], U(z) = UL(z) . . . U1(z).
At the `-th iteration, the algorithm first searches for the
largest off-diagonal element exceeding a predefined threshold,
δ. U `(z) is then constructed using delay polynomial matrices
and unitary matrices, which are designed to zero out the off-
diagonal elements on the matrix coefficient of z0, and applied
to the entire polynomial matrix. To keep the polynomial order
compact, a fraction µ, of the total Frobenius-norm squared,
is truncated as detailed in [51]. After L iterations, Rxx(z) is
approximately diagonalized according to [64]

Λ(z) ≈ U(z)Rxx(z)UP (z) = U(z)E{x(z)xP (z)}UP (z),
(10)

where x(z) is the z-transform of x(n) based on (8).
The zeroing unitary matrix computed at each iteration

can take the form of a Givens rotation in SBR2 [51], a
Householder-like optimization procedure as in [49], a combi-
nation of Householder reflection and Givens rotation matrices
in [50] or an eigenvector matrix in the sequential matrix
diagonalization (SMD) algorithm [48].

IV. PEVD-BASED SPEECH ENHANCEMENT

The z-transform of the space-time covariance matrix of the
microphone signals obtained by applying (2) to (5) is

Rxx(z) = HT
dRss(z)Hd + HT

eRss(z)He

+ Rll(z) + Rvv(z) (11)
= Rs̃s̃(z) + Rṽṽ(z),

where Rss(z), Rvv(z) and Rll(z) are respectively, the space-
time covariance polynomial matrices of the anechoic speech,
noise and late reverberation modelled as a spatially diffuse
field [61], and Hd = [h1,d, . . . ,hM,d], with He similarly
defined. Rs̃s̃(z), which is obtained by grouping the direct-
path and early reflections, is uncorrelated with Rṽṽ(z), that
includes the late reflections and additive noise components.
Assuming stationarity within each processing frame, (5) is
estimated using T + 1 samples per frame according to

R̂xx(τ) ≈ 1

T + 1

T∑
n=0

x(n)xH(n− τ). (12)

Furthermore, (8) can be approximated using

R̂xx(z) ≈
W∑

τ=−W
Rxx(τ)z−τ , (13)

where W is the truncation window which reflects the extent
of temporal correlation of the speech signals. Hence, in
addition to the PEVD parameters, the frame size, T , and
window length, W , can affect the performance of the proposed
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algorithm as investigated in Section VI-A. Since noise and
speech are assumed uncorrelated, the PEVD gives [58]

Rxx(z) ≈
[
UP
s̃ (z) UP

ṽ (z)
] [ Λs̃(z) 0

0 Λṽ(z)

] [
U s̃(z)
U ṽ(z)

]
,

(14)

where {.}s̃ and {.}ṽ are associated with the signal-plus-noise
(or simply signal) and noise-only (or simply noise) subspaces.

The eigenvector polynomial matrix, U(z), can be applied
as a filterbank for x(z) so that the outputs, y(z) = U(z)x(z),
are strongly decorrelated [48], according to

E{y(z)yP (z)} = E{U(z)x(z)xP (z)UP (z)} ≈ Λ(z). (15)

Unlike some speech enhancement approaches, the proposed
method does not rely on noise estimation since the strong
decorrelation property of PEVD implicitly orthogonalizes the
subspaces across all time lags in the range of W . Furthermore,
U(z) is lossless or para-unitary by construction and has an
all-pass filter frequency response [63]. This implies that U(z)
can only redistribute spectral power among channels and not
change the total (over all subspaces) signal and noise power
[51]. The PEVD algorithms in [51] also tend to sort the
strongly decorrelated outputs in descending order of signal
energy because of the spectral majorization property [48].
The signal subspace comprises mostly speech components,
originally distributed over all microphones but now summed
coherently. In contrast, the noise subspace is dominated by
ambient noise and late reflections in the reverberant channels.
Consequently, speech enhancement is achieved by combining
components in the signal subspace, defined as the first channel
with the largest total spectral power, and nulling components in
the noise subspace, e.g., U ṽ(z) = 0. The PEVD-based speech
enhancement algorithm is summarized in Algorithm 1.

A. Noise Reduction in Anechoic Environment Case
In an anechoic environment, (3) simplifies (11) to

Rxx(z) = HT
dRss(z)Hd + Rvv(z), (16)

where the (p, q)th element can be written as

rp,q(τ) = sp(n)sq(n− τ) + vp(n)vq(n− τ)

= s0(n− τp)s0(n− τq − τ) + vp(n)vq(n− τ), (17)

which implies that the difference in lags between every
channel pair can only be captured by PEVD in the range
of W . Then, PEVD decomposes the signal information into
subspaces associated with the anechoic speech and the noise
signals based on (14).

B. Speech Dereverberation in Noiseless Environment Case
When the environment is noiseless, (4) simplifies (11) to

Rxx(z) = HT
dRss(z)Hd + HT

eRss(z)He + Rll(z) (18)

Comparing with (11), the first two terms are part of the desired
speech subspace. They are uncorrelated and orthogonal with
the last term, which contains only the late components and
forms the noise subspace. The window size, W , should be
large enough to include the direct-path and early reflections in
order to achieve the desired enhancement.

Algorithm 1 PEVD-based speech enhancement [58].
Inputs: x(n) ∈ RM , n ∈ {0, . . . , T},W, δ, µ, L.

Rxx(τ)← E{x(n)xT (n− τ)} // see (5)
Rxx(z)← Z{Rxx(τ)} // see (8)
U(z),Λ(z)← PEVD {Rxx(z), δ, µ, L} // any [48]–[51]
x(z)← Z{x(n)} // see (8)
y(z)← U(z)x(z) // speech enhancement
y1(z)← y(z) // enhanced signal in the first channel
return y1(z).

V. EXPERIMENTAL SETUP

A. Acoustic Environments and Setup

Anechoic speech signals, which are sampled at 16 kHz, are
taken from TIMIT corpus [65]. Room impulse response mea-
surements and noise recordings are taken from the complete
ACE corpus [66]. The T60 of the rooms in the ACE corpus
range from 0.332 s to 1.22 s. The 3-channel ‘mobile’ array
was used in most experiments. The 8-channel linear array, with
microphones spaced by 60 mm, was used for the study on the
use of a different number of microphones. In the direct-path-
only experiments, the propagation delays were drawn from the
discrete uniform distribution, U(1, 1000), and ordered such
that τ1 < τ2 < τ3.

Babble, car and factory noise from the Noisex database [67],
as well as restaurant, residential traffic and city street noise
from the International Sound Effects (SoundFx) library [68],
and white noise, were used.

The noise recordings in ACE were used directly. With the
Noisex and SoundFx noise signals, diffuse noise signals were
produced using [69]. In each trial, sentences from a randomly
selected speaker were concatenated to have 8 to 10 s duration.
The anechoic speech signals were then convolved with the
impulse responses at each microphone channel before being
corrupted by additive noise using [70], implemented in [71].
The signal to noise ratio (SNR) ranged from -10 dB to 20 dB.
For each Monte-Carlo simulation, 50 trials were conducted.

B. Speech Enhancement Comparative Algorithms

The proposed PEVD method was compared against two ver-
sions of the MWF, two subspace approaches, the generalized
weighted prediction error (GWPE), and two joint approaches
that can suppress both noise and reverberation. Both MWFs
are based on the concatenation of a minimum variance distor-
tionless response (MVDR) beamformer followed by a single-
channel Wiener filter [27]. The first is a practical MWF which
uses a relative transfer function (RTF)-based speech estimator
and a noise estimator based on the parameters used in [29].
The second is the Oracle MWF (OMWF) which provides an
ideal performance upper-bound since it uses complete prior
knowledge of the clean speech signal, based on [13] where
the filter length is 80. The PEVD subspace approach was
also compared against the subspace method for coloured noise
(COLSUB) which uses a GEVD [20] and the multi-channel
subspace (MCSUB) method [21]. The GWPE dereverberation
algorithm [43], and integrated methods for noise reduction
and dereverberation such as the weighted power minimization
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distortionless response (WPD) [45] and the integrated sidelobe
cancellation and linear prediction (ISCLP) Kalman filter [30],
were also included as benchmark approaches. The published
code was used for ISCLP while the published parameters and
ground truth direction of arrivals (DoAs) from ACE were used
to compute the steering vectors for WPD [45] to avoid signal
direction mismatch errors.

For all experiments, the PEVD parameters, chosen follow-
ing [57]–[59], were δ =

√
N1/3 × 10−2 where N1 is the

square of the trace-norm of Rxx(0), µ = 10−3 and L = 500.
In all experiments, except for those investigating the effects of
varying T and W , T = W = 1600 samples were used. With
this parameter selection, correlations within 100 ms, which
were assumed to include the direct-path and early reflection
components, were captured and used by the algorithm. The
source code for our method and experiments is available [72].

C. Evaluation Measures

For the noise reduction evaluation, the segmental signal
to noise ratio (SegSNR) and frequency-weighted SegSNR
(FwSegSNR) [73] are used. To measure the speech quality
and intelligibility and to account for processing artefacts,
short-time objective intelligibility (STOI) [74] and perceptual
evaluation of speech quality (PESQ) [75] are used. A key
measure of dereverberation is the direct-to-reverberant ratio
(DRR) but the modified impulse responses after processing
are generally unavailable. Instead, the normalized signal-to-
reverberant ratio (NSRR), which is a signal-based measure
shown to be equivalent to DRR under certain conditions [76],
and the Bark spectral distortion (BSD) [6], are used.

These measures are computed for the signals before and
after enhancement using the proposed and benchmark algo-
rithms and the improvement ∆ is reported. Positive ∆ values
show improvements in all measures except ∆BSD, for which
a negative value indicates a reduction in spectral distortions.

VI. RESULTS AND DISCUSSIONS

Monte-Carlo simulations have been conducted to understand
1) the impact of varying the parameters of the proposed
PEVD-based approach and; 2) the effectiveness of the pro-
posed approach in comparison to other methods for speech
enhancement, including the specific cases of noise reduction
in anechoic environments and dereverberation in noiseless
environments. Listening examples are also available [72].

A. Parameter Selection for the PEVD-based Algorithm

These parameter values have also been confirmed to exhibit
similar trends for different scenarios including noise types and
rooms. However, due to space limitations, we present in this
paper only the results for white noise in Lecture Room 2.

1) Frame Size and Window Length: With a fixed frame size,
T = 1600 samples, the window length W was varied from 0
to 1600 samples. When W = 0, PEVD is equivalent to an
EVD applied to the instantaneous spatial covariance matrix
in (7), and this can only decorrelate the microphone signals
at a single time lag. As W increases, correlations between
microphones at other lags are computed and used in the PEVD
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Fig. 1. Speech enhancement for white noise in Lecture Room 2 using different
window length W for the approximation of the z-transform.
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Fig. 2. Speech enhancement for white noise in Lecture Room 2 using different
frame length T for the computation of the space-time covariance matrix.
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Fig. 3. Speech enhancement results for white noise in Lecture Room 2 using
different numbers of microphones M .

algorithm. In the presence of white noise in Lecture Room 2,
Fig. 1 highlights the limitation of using only the instantaneous
lag as indicated by the lowest scores in all measures while the
scores substantially improve as W increases.

The marginal improvement in all measures across all SNRs
with frame size T is shown in Fig. 2. Similar results are
observed for intermediate values of T . This is expected since
larger frame sizes will provide a better estimate of the second-
order statistics for the PEVD algorithm, assuming stationarity.

2) Number of Microphones: The impact of changing the
number of microphones in the range 2 to 8 was investi-
gated using the 8-channel linear array. For white noise in
Lecture Room 2, Fig. 3 shows that PEVD can reduce noise
and reverberation without sacrificing speech intelligibility and
quality even with 2 microphones as indicated by the improve-
ment in all metrics. Generally, PEVD performs better with
the number of channels as expected, with very similar results
obtained for intermediate values of M .

B. Comparison of Speech Enhancement Algorithms

1) Noise Reduction of Anechoic Speech in Noise: The
illustrative example based on a clean speech corrupted by 0 dB
babble noise in an anechoic environment is shown in Fig. 4.
Overall, the energy of the babble noise has been significantly
reduced after the PEVD-based enhancement, as reflected by
an improvement in ∆SegSNR and ∆FwSegSNR, respectively
in Table I. Although COLSUB [20], which uses a GEVD,
improved in both ∆SegSNR and ∆FwSegSNR, the structures
of the babble noise and speech signals are lost for example

TABLE I
NOISE REDUCTION PERFORMANCE OF AN ANECHOIC SPEECH IN 0 DB

DIFFUSE BABBLE NOISE EXAMPLE, WITH SCORES (SEGSNR=-8.93 DB,
FWSEGSNR=-6.86 DB, STOI=0.674 AND PESQ=1.63).

Algorithm ∆SegSNR ∆FwSegSNR ∆STOI ∆PESQ
MWF -2.37 dB -2.91 dB -0.122 -0.22

OMWF 5.37 dB 4.31 dB 0.104 0.41
COLSUB 5.23 dB 3.92 dB 0.024 0.14
MCSUB 1.96 dB -0.60 dB 0.008 0.17
PEVD 4.36 dB 4.22 dB 0.097 0.34
GWPE -0.04 dB -0.23 dB -0.009 -0.01
WPD 0.60 dB -0.03 dB -0.004 0.02

ISCLP -7.65 dB -7.99 dB -0.167 -0.33
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Fig. 4. Normalized spectrograms of anechoic speech in 0 dB babble noise
example and the processed signals.

at 3 s and processing artefacts are observed in the listening
examples [72]. These artefacts may have led to lower ∆PESQ
and ∆STOI for COLSUB compared to PEVD.

For this example, Table I shows that OMWF performed best
in all measures as expected because it uses prior knowledge
of the clean speech signal. Despite being a completely blind
approach without using any noise estimator, PEVD is the best
performing algorithm after OMWF in terms of ∆FwSegSNR,
∆STOI and ∆PESQ. This example demonstrates that the
PEVD approach can perform comparably to an oracle al-
gorithm. Enhancement using MCSUB or WPD offers some
improvement in some measures while MWF, GWPE or ISCLP
worsens the scores across all measures.

The Rxx(z) for the above example used in PEVD is
presented in Fig. 5, with the (p, q)th subplot representing the
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Fig. 5. Space-time covariance, Rxx(z), of the noisy speech example in
Fig. 4 with the instantaneous covariance matrix marked by red cross signs.
The (p, q)th subplot represents the z-transform of the element rp,q(τ).
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Fig. 6. Λ(z) polynomial matrix of the noisy speech example in Fig. 5 with
each subplot representing the z-transform of each element.

z-transform of rp,q(τ), p and q correspond, respectively, to the
row and column indices of Fig. 5. An EVD, which is applied
to the instantaneous covariance matrix corresponding to the
coefficient of z0, can only decorrelate the signals at a single
time lag [19], [21]. This is inadequate for this example because
the cross-correlations on the off-diagonals have peaks at other
time lags. Instead, the PEVD can impose decorrelation over a
range of time lags as shown in Fig. 6, where every off-diagonal
element has a magnitude less than 0.58% of the trace-norm of
Rxx(0). Because of trimming, the polynomial order of Λ(z)
in Fig. 6 is much smaller than that of Rxx(z) in Fig. 5.

The results of Monte-Carlo simulations involving 50 trials
of anechoic speech with -10 dB to 20 dB babble noise are
plotted in Fig. 7. OMWF is the best performing algorithm
which can consistently provide improvement in all metrics
over the entire range of SNRs. While COLSUB performs up
to 2 dB better than OMWF in ∆SegSNR and ∆FwSegSNR
at lower SNRs, the ∆STOI and ∆PESQ are negative. After
OMWF, PEVD is the best performing algorithm in ∆STOI and
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Fig. 7. Noise reduction results for Noisex babble noise.
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Fig. 8. Noise reduction results for SoundFx restaurant noise.

∆PESQ and one of the best in ∆SegSNR and ∆FwSegSNR.
The noise reduction performances of MWF, MCSUB, GWPE,
WPD and ISCLP are limited in all measures across all SNRs.

The proposed and baseline approaches were tested for an
extensive range of noise types with results given in Fig. 8, for
the example of restaurant noise. Noise reduction for COLSUB
is achieved at the cost of reduced speech intelligibility and
quality. The OMWF, which uses oracle knowledge of the
clean speech, performs best across all measures and can
simultaneously reduce noise and improve speech intelligibil-
ity and quality. PEVD comes close as second best, despite
being completely blind, just like the other approaches. Most
approaches do not improve and may even reduce the measures.

2) Speech Dereverberation in the Absence of Noise: An
illustrative result for a single reverberant speech example in
Lecture Room 2 without background noise is shown in Fig. 9.
The spectrograms show qualitatively that both GWPE and
PEVD can suppress reverberation while retaining the overall
speech structure. However, GWPE seems to have applied
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TABLE II
DEREVERBERATION PERFORMANCE OF A NOISELESS, REVERBERANT

EXAMPLE IN LECTURE ROOM 2, WITH MEASURED SCORES
(NSRR=-6.03 DB, BSD=0.38 DB, STOI=0.810, PESQ=2.01).

Algorithm ∆NSRR ∆BSD ∆STOI ∆PESQ
MWF -1.06 dB 0.27 dB -0.057 -0.26

OMWF 0.10 dB 0.04 dB 0.009 0.16
COLSUB 0.00 dB 0.00 dB 0.000 0.00
MCSUB -3.20 dB 0.28 dB -0.028 0.01
PEVD 5.79 dB -0.12 dB 0.018 0.12
GWPE 0.68 dB -0.25 dB 0.091 0.70
WPD 4.02 dB -0.23 dB 0.071 0.40

ISCLP 0.29 dB -0.22 dB 0.040 0.41
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Fig. 9. Normalized spectrograms of reverberant speech example and the
improvement, x1(n)− y1(n), is scaled and time aligned with x1(n).

a more aggressive suppression which results in a cleaner
spectrogram, as supported by the lowest ∆BSD in Table II,
indicating lower spectral distortions than PEVD. PEVD out-
performs all algorithms in ∆NSRR and WPD, which uses the
steering vector computed from the ground truth DoA, ranks
second. Based on ∆STOI and ∆PESQ, GWPE performed
best, followed by WPD, ISCLP, PEVD and OMWF. The other
algorithms do not provide significant improvements.

To understand the processing involved, the difference be-
tween the reverberant and processed signals are plotted in
red along with the reverberant signal in blue. The PEVD
improvement in Fig. 9f follows the temporal changes of the
reverberant signal more closely while the GWPE improvement
has higher amplitudes for example at roughly 1 s and 4 s,
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Fig. 10. Speech dereverberation results in noiseless environments.

which suggests more aggressive processing. Listening exam-
ples for GWPE indicate the removal of most of the early
but not the direct-path and some late reverberant components,
as also observed in [43]. Listening examples for PEVD, on
the other hand, indicate that the direct-path and some early
reflection components are retained in the enhanced signal in
the first channel, as expected for reasons given in Section IV-B.
The late reverberant components, which are absent in the
enhanced signal, are observed in the second and third channels
because of orthogonality [72].

Across all rooms, due to the removal of late reflections,
PEVD ranks second in ∆NSRR after WPD as shown in
Fig. 10. Moreover, GWPE processes the signals aggressively
as discussed above and therefore leads to the best improvement
in ∆BSD, ∆STOI and ∆PESQ. The overall performance of
WPD and ISCLP are comparable and is followed by PEVD. In
this noise-free scenario, speech dereverberation using OMWF
is equivalent to a Wiener deconvolution. Averaged across
all rooms, ∆NSRR and ∆BSD for OMWF are worsened
by -0.94 dB and 0.14 dB, while ∆STOI and ∆PESQ are
increased by 0.015 and 0.13 respectively. This is expected
because the FIR filter of 80 taps is insufficient to invert with
high accuracy the room impulse responses which are thou-
sands of samples long. COLSUB also offers no improvement
while MWF and MCSUB tend to worsen all metrics.

3) Speech Enhancement of Reverberant Speech in Noise:
Results for reverberant speech corrupted by ACE babble
noise in the strongly reverberant Lecture Room 2 is shown in
Fig. 11. For SNR≤10 dB, a trade-off between noise reduction
and speech intelligibility and quality, is observed for COLSUB
which shows negative ∆STOI and ∆PESQ. On the other hand,
OMWF, which is designed to minimize speech distortion using
knowledge of the clean speech, performs the best in ∆STOI
and ∆PESQ but not in ∆SegSNR and ∆FwSegSNR. This also
reflects the fact that speech intelligibility may not necessarily
be affected by noise levels, up to some limit, compared to
speech. Using prior knowledge of DoA to compute the steering
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Fig. 11. Speech enhancement results for babble noise in Lecture Room 2.
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Fig. 12. Speech enhancement results for fan noise in Office 1.

vector, WPD provides further improvement in all measures
over GWPE. At 20 dB SNR, algorithms targeting reverberation
such as GWPE and joint approaches like WPD and ISCLP,
perform better than the noise reduction approaches. Fig. 11
also shows that PEVD performs best in ∆NSRR and ∆BSD,
ranks second in ∆SegSNR, ∆FwSegSNR and ∆STOI, and
one of the best in ∆PESQ for all SNRs.

Results for the ACE fan noise in the scenario for Office 1
in Fig. 12 also show that noise reduction algorithms perform
better at low SNRs, i.e. below 5 dB, while dereverberation
algorithms perform better at high SNRs, for example at
20 dB. Across all noise and reverberation conditions, PEVD
can consistently suppress both noise and reverberation and
improve both speech intelligibility and quality. In addition,
PEVD can offer further improvement by up to 5 dB in
∆FwSegSNR, 0.1 in ∆STOI and -2 dB in ∆BSD over state-
of-the-art joint approaches, WPD and ISCLP. Furthermore,
listening examples in [72] provide supporting evidence that
our PEVD-based approach does not introduce any processing
artefacts into the enhanced signal.

Comprehensive testing over the complete ACE corpus has
been performed with summary results given in Table III, for
the example of the most and least reverberant rooms in 0 dB
babble noise. Results indicate that PEVD can consistently
provide the best dereverberation and one of the best noise
reduction performances. Only OMWF outperforms PEVD in
∆STOI. However, OMWF requires oracle prior information,
which is unavailable in practice. In contrast, the proposed
PEVD approach is blind, using only the microphone signals.
The source code and listening examples corresponding to
the results are available in the supplementary files of this
manuscript as well as [72].

VII. CONCLUSION

In this paper, multi-channel broadband speech signals were
modelled using polynomial matrices in order to capture the
spatial, spectral as well as temporal correlations between
microphones. It was shown that the proposed PEVD approach
can decorrelate the microphone signals in space, time and
frequency simultaneously. A novel speech enhancement al-
gorithm based on the PEVD was proposed. The proposed
algorithm achieves significant noise reduction and dereverber-
ation using a weighted combination of the signal subspace.
Comparative simulations under diverse acoustic conditions
have indicated that the proposed method consistently improves
noise reduction metrics, speech intelligibility and quality
scores, and dereverberation measures. Despite being a blind
and unsupervised algorithm, the approach does not rely on
any noise estimator and does not introduce any processing
artefacts into the enhanced signal as observed in the listening
examples at [72].
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TABLE III
ENHANCEMENT PERFORMANCE EVALUATED ON THE ACE CORPUS FOR 0 DB BABBLE NOISE, MEASURED USING (MEAN±STANDARD DEVIATION).

∆FWSEGSNR, ∆NSRR AND ∆BSD ARE MEASURED IN DB. THE PROPOSED PEVD APPROACH CONSISTENTLY PERFORMS AMONG THE BEST.

Room (T60) Office 1 (0.332 s) Lecture Room 2 (1.22 s)
Algorithm ∆FwSegSNR ∆STOI ∆NSRR ∆BSD ∆FwSegSNR ∆STOI ∆NSRR ∆BSD
MWF -0.96 ± 1.30 -0.020 ± 0.015 -2.07 ± 1.30 0.99 ± 1.70 -0.95 ± 1.10 -0.020 ± 0.015 -2.32 ± 0.99 1.14 ± 1.30
OMWF 2.49 ± 1.90 0.088 ± 0.022 1.21 ± 3.30 -2.09 ± 1.40 1.90 ± 1.50 0.083 ± 0.018 0.80 ± 4.10 -1.86 ± 1.70
COLSUB 4.49 ± 1.50 -0.096 ± 0.024 -1.25 ± 2.20 -0.82 ± 1.00 5.12 ± 1.60 -0.107 ± 0.025 -3.00 ± 1.50 -1.36 ± 1.00
MCSUB -1.93 ± 2.70 -0.005 ± 0.029 -7.21 ± 3.10 3.77 ± 6.50 -3.11 ± 6.30 -0.040 ± 0.038 -11.48 ± 6.10 17.80 ± 44.00
PEVD 2.11 ± 1.00 0.038 ± 0.030 2.15 ± 1.20 -1.79 ± 0.81 2.40 ± 0.60 0.037 ± 0.013 2.39 ± 0.80 -2.13 ± 0.66
GWPE 0.32 ± 0.18 0.004 ± 0.005 0.12 ± 0.19 -0.30 ± 0.17 0.08 ± 0.11 -0.001 ± 0.004 -0.06 ± 0.16 -0.08 ± 0.11
WPD 0.67 ± 0.41 0.006 ± 0.008 0.20 ± 0.50 -0.54 ± 0.36 1.40 ± 1.30 0.023 ± 0.019 0.73 ± 1.30 -1.19 ± 1.20
ISCLP -0.65 ± 1.90 -0.025 ± 0.024 3.49± 1.70 0.24 ± 2.00 -0.66 ± 1.40 -0.044 ± 0.016 0.74 ± 2.00 0.31 ± 1.50
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