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ABSTRACT

Speech enhancement is important for applications such as telecom-
munications, hearing aids, automatic speech recognition and voice-
controlled system. The enhancement algorithms aim to reduce in-
terfering noise while minimizing any speech distortion. In this work
for speech enhancement, we propose to use polynomial matrices in
order to exploit the spatial, spectral as well as temporal correlations
between the speech signals received by the microphone array. Poly-
nomial matrices provide the necessary mathematical framework in
order to exploit constructively the spatial correlations within and
between sensor pairs, as well as the spectral-temporal correlations
of broadband signals, such as speech. Specifically, the polynomial
eigenvalue decomposition (PEVD) decorrelates simultaneously in
space, time and frequency. We then propose a PEVD-based speech
enhancement algorithm. Simulations and informal listening exam-
ples have shown that our method achieves noise reduction without
introducing artefacts into the enhanced signal for white, babble and
factory noise conditions between -10 dB to 30 dB SNR.

Index Terms— Polynomial eigenvalue decomposition, broad-
band multi-channel processing, strong decorrelation, speech en-
hancement, signal denoising.

1. INTRODUCTION

Speech enhancement of noise corrupted signals remains an impor-
tant research area due to its relevance in diverse applications ranging
from human-to-human communications in telecommunications and
hearing aids to human-to-machine interaction in automatic speech
recognition, voice-controlled systems and robot audition. Speech
enhancement systems aim to reduce interfering noise but may dis-
tort the speech signal and introduce processing artefacts such as mu-
sical noise, arising from large narrowband fluctuations in the resid-
ual noise [1]. To trade off noise reduction against speech distortion,
a control parameter is commonly introduced [2, 3]. For instance, ag-
gressive noise reduction might be preferred for human-to-machine
applications while mobile phone and hearing aids users might prefer
less speech distortion at the expense of higher residual noise.

Existing approaches to speech enhancement can be classified
into single- and multi-channel techniques. Methods for single-
channel enhancement include spectral subtraction [4, 5], statistical-
based and subspace-based approaches. Statistical methods are typi-
cally based on minimising the mean-square error (MSE) of the clean
and estimated speech spectrum [2], the log-spectrum (log-MMSE)
[6] or the single-channel Wiener filter [3, 7]. In subspace methods,
noisy signals are decomposed into signal and noise subspaces and

The research leading to these results has received funding from the UK
EPSRC Fellowship grant no. EP/P001017/1.

enhancement is achieved by recovering the speech signal from the
signal subspace [8, 9].

In [3, 7], the multi-channel Wiener filter (MWF) was derived
as an optimal filter. Extensions to the work include post-filtering
[10], beamformers [11, 12, 13] and the multi-channel Kalman fil-
ter [14]. While existing multi-channel approaches may potentially
achieve noise reduction without speech distortion under spatially
temporally white noise conditions, this remains a practical chal-
lenge under other noise conditions in real-world scenarios [15].

A large number of contributions are based on the assumption
of narrowband models. Single-channel approaches exploit tem-
poral correlations while multi-channel approaches capture spatio-
temporal correlations. However, extensions to broadband signals
cannot account for spectral correlations. The modelling of space-
time correlations for broadband signal processing can be achieved
using polynomial matrices. This has motivated the development
of a family of polynomial eigenvalue decomposition (PEVD) algo-
rithms [16, 17, 18], based on the pioneering second-order sequential
best rotation (SBR2) algorithm [19]. Since then, PEVD has been
widely used in polynomial multiple signal classification (MUSIC)
[20], blind source separation [21], source identification [22] and
adaptive beamforming [23].

In this paper, we propose to utilize the PEVD for multi-channel
speech enhancement in order to explicitly model the spatial, spectral
and temporal correlations of broadband signals impinging on the
microphone array. The main, novel contributions are (i) the use of
polynomial matrix as a broadband, multi-channel signal model for
speech, (ii) the proposal of a novel algorithm for speech enhance-
ment using PEVD that does not introduce any audible artefacts, and
(iii) the evaluation of the proposed approach for realistic signals un-
der various noise conditions and a comparison against log-MMSE
and the MWF as benchmark approaches.

2. PEVD-BASED PROBLEM FORMULATION

2.1. Signal Model

The output at the m-th microphone at the discrete-time sample n is

xm(n) =

Q∑
q=0

hm(n− q)s(q) + vm(n), m = 1, 2, . . . ,M, (1)

where s(n) is the source signal, hm(n) is the m-th chan-
nel modelled as a Qth order finite impulse response filter
and vm(n) is the additive noise signal. The data vector is
x(n) = [x1(n), . . . , xM (n)]T ∈ RM , n = 0, . . . , T − 1. Noise
signals are assumed to be uncorrelated at different sensors and with
the source signal. Furthermore, {·}∗ denotes the complex conju-
gate, {·}T is the transpose, {·}H is the Hermitian, E{·} is the ex-
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pectation operator, j =
√
−1, I and 0 are the identity and zero

matrix, R and C are the real and complex space, respectively.

2.2. Motivation for Polynomial Matrix Models

Broadband signals received by microphone arrays exhibit spatial,
spectral and temporal correlations. The space-time covariance ma-
trix is defined as

Rxx(τ) = E{x(n)xT (n− τ)} ∈ RM×M , (2)

where the (p, q)th element, rpq(τ) = E{xp(n)xq(n− τ)}.
If s(n) is a narrowband signal at frequency f0, xm(n) is re-

lated to the signal, x1(n), at the reference microphone, m = 1,
by a constant phase shift, φm = 2πf0τm, assuming only direct-
path propagation. Hence, the data vector is equivalent to x(n) =
[x1(n), x1(n)e−jφ2 , . . . , x1(n)e−jφM ]T , such that

rpq(τ) = E{x1(n)e−jφp [x1(n− τ)e−jφq ]∗}

= E{x1(n)x1(n)}e−j(φp−φq−2πf0τ), (3)

where rpq(τ) ∈ C and Rxx(τ) ∈ CM×M for this example. The
phase difference between the (p, q)th sensor pair, φpq = φp − φq ,
depends only on the array geometry and is associated with the time-
difference of arrival (TDoA). Since the array geometry is fixed and
known a priori, φpq is constant and can be computed at any τ . Clas-
sical subspace-based approaches for the enhancement of narrow-
band signals approximate (2) by evaluating only the instantaneous
spatial covariance matrix at τ = 0 according to

Rxx(0) = E{x(n)xT (n)}. (4)

However, for broadband signals such as speech, different frequency
components are affected by different phase shifts at the same time
lag. Consequently, for speech enhancement, it is crucial to explic-
itly perform phase corrections for different frequency components
at different time lags. Therefore, the correlations across different
sensors and temporal lags need to be considered. Concatenating
the covariance matrix, Rxx(τ), for all choices of τ ∈ {−T +
1, . . . , T−1}, results in a tensor of dimensionM×M×(2T−1). In
order to explicitly capture the spectral correlations, speech signals
are typically processed in the short-time Fourier transform (STFT)
domain. Therefore, the covariance needs to be further expanded to a
M×M×(2T−1)×K tensor, whereK is the number of frequency
bins in the STFT.

A more compact representation of the speech signals, that cap-
tures the correlations in space, time and frequency, can be obtained
by representing the speech signals using z-transform, rather than
the STFT. The z-transform of (2) is a para-Hermitian polynomial
matrix [19, 24] such that

Rxx(z) =

∞∑
τ=−∞

Rxx(τ)z−τ ∈ CM×M , (5)

where z = ej2πf . The polynomial matrix can be interpreted as
a matrix with polynomial elements or, equivalently, a polynomial
with matrix coefficients.

2.3. Family of PEVD Algorithms

The PEVD of a para-Hermitian matrix [19] is given by

Rxx(z) ≈ UP (z)Λ(z)U(z), (6)

where the rows of U(z) are the eigenvectors with corresponding
eigenvalues on the diagonal polynomial matrix, Λ(z). The decom-
position is computed using an iterative algorithm [19, 16, 17, 18]
based on similarity transforms involving L para-unitary polynomial
matrices, U(z) = UL(z) . . .U1(z). The polynomial matrix at the
`-th iteration, U`(z), satisfies the para-unitary condition [24],

UP
` (z)U`(z) = U`(z)U

P
` (z) = I, (7)

where {·}P denotes the para-Hermitian operator such that
UP
` (z) = UH

` (z−1). At each iteration, the PEVD algorithm [19]
first searches for the largest off-diagonal element (column norm)
before applying a delay matrix to bring the dominant element (col-
umn) to the principal plane, the plane of z0, if it exceeds a prede-
fined threshold, δ. The dominant element (column) is then zeroed
out using a unitary matrix computed based on the principal plane
but applied to the entire polynomial matrix. To keep the polynomial
order compact, a fraction of the total Frobenius-norm squared, µ, is
truncated as detailed in [19].

Due to the para-Hermitian symmetry of Rxx(z), the search
space is confined to half the number of off-diagonal elements and
similarity transforms ensure that operations act on dominant ele-
ment (column-row) pairs. After L iterations, Rxx(z) is approxi-
mately diagonalized according to

Λ(z) ≈ U(z)Rxx(z)UP (z) = U(z)E{x(z)xP (z)}UP (z),
(8)

where x(z) is the z-transform of x(n) based on (5). The zero-
ing unitary matrix computed at iteration ` can take the form of a
Givens rotation in SBR2 [19], that targets the dominant element,
or Householder-like optimization procedure as in [18]. A combina-
tion of Householder reflection and Givens rotation matrices is used
in [17] and the sequential matrix diagonalization (SMD) algorithm
[16], that targets the dominant column, uses the eigenvector matrix.

2.4. PEVD-based Speech Enhancement

By filtering x(z) through the filterbank U(z), the channel outputs,
y(z) = U(z)x(z), are strongly decorrelated [19] according to

E{y(z)yP (z)} = E{U(z)x(z)xP (z)UP (z)} ≈ Λ(z). (9)

Since noise and speech are assumed uncorrelated, the PEVD gives

Rxx(z) ≈
[

UP
S (z) 0

] [ ΛS(z) 0
0 0

] [
US(z)

0

]
+
[

0 UP
V (z)

] [ 0 0
0 ΛV (z)

] [
0

UV (z)

]
, (10)

where {.}S and {.}V represent the orthogonal signal and noise sub-
space components. PEVD algorithms sort Λ(z) in descending or-
der which tends to result in the spectrally majorized property [19].
Consequently, noise reduction in the output channels is achieved by
combining components in the signal subspace and nulling compo-
nents in the noise subspace. The PEVD-based speech enhancement
is summarized in Algorithm 1.

3. SIMULATIONS AND RESULTS

3.1. Experiment Setup

To evaluate the proposed approach, noisy speech signals are gen-
erated at 16 kHz sampling frequency using anechoic speech from
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Algorithm 1 PEVD-based speech enhancement.

Inputs: x(n) ∈ RM , n ∈ {0, . . . , T − 1},W, δ, µ, L.
Rxx(τ)← E{x(n)xT (n− τ)} // see (2)
Rxx(z)← Z{Rxx(τ)} // see (5)
U(z),Λ(z) ← PEVD {Rxx(z), δ, µ, L} // use any PEVD
algorithm [16, 17, 18, 19]
x(z)← x(n) // see (5)
y(z)← U(z)x(z) // speech enhancement
return y(z).

TIMIT corpus [25] and babble as well as factory noise signals from
the Noisex database [26]. Monte-Carlo simulations involving 150
trials are conducted. In each trial, sentences from a randomly se-
lected speaker are concatenated so that each lasted for 8 to 10 s
and are then corrupted by additive noise using [27]. The noise con-
ditions used in the simulations include white, babble and factory
noise ranging from -10 dB to 30 dB signal to noise ratio (SNR). For
the multi-channel algorithms, the propagation delays for the 3 chan-
nels are drawn from the discrete uniform distribution, U(1, 1000)
and are ordered such that τ1 > τ2 > τ3.

The PEVD parameters, adapted from [19], are δ =
√
N1/3 ×

10−2 where N1 is the square of the trace-norm of Rxx(0), µ =
10−3 and L = 500. To estimate Rxx(z) in (5), Rxx(τ) in (2) is
first computed based on the sample mean given by

R̂xx(τ) ≈ 1

T

T−1∑
n=0

x(n)xT (n− τ), (11)

and τ = ±W , where W is the truncation window that reflects the
temporal correlation of speech signals. In the experiments, T =

W = 1600 so that R̂xx(z) is recursively estimated every 100 ms.
The proposed PEVD method is compared against the log-

MMSE method in [2] and two versions of the MWF, which are
based on the concatenation of a minimum variance distortionless
response (MVDR) followed by a single-channel Wiener filter [28].
The first MWF uses a speech estimator that exploits the relative
transfer function and a noise estimator based on the parameters used
in [14]. The second is the Oracle-MWF (O-MWF) which will ap-
proximate the ideal performance bound since it uses complete prior
knowledge of the clean speech signal. The parameters are based on
the batch version in [3] where the filter length is 80.

3.2. Performance Measures

For performance evaluation, the segmental signal to noise ratio
(SegSNR), frequency-weighted SegSNR (FwSegSNR) [29], short-
time objective intelligibility (STOI) [30] and perceptual evaluation
of speech quality (PESQ) [31] scores are averaged over all 150 trials
for the proposed approach, benchmark algorithms and noisy signals.

3.3. Results and Discussions

Fig. 1 shows the results for a single trial based on a clean speech cor-
rupted by 5 dB babble noise. During the silence period from 2.2 to
2.4 s, the energy of the babble noise has been significantly reduced
after the PEVD-based enhancement. For the log-MMSE-based en-
hancement, the structures of the babble noise and speech signal are
lost and the remaining large narrowband fluctuations result in musi-
cal noise. For this example, Table 1 shows that O-MWF performed
the best in all measures because it uses prior knowledge of the clean

Clean speech signal, s(n)
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Figure 1: Spectrograms of clean speech, noisy and enhanced signals
using log-MMSE and PEVD for a 5 dB babble noise example.
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Figure 2: R̂xx(z) for the example in Fig. 1 represented by blue dots
and R̂xx(z0) is represented by red cross signs.

-0.4

0

0.4

0.8

-150 0 150
-0.4

0

0.4

0.8

-150 0 150
-0.4

0

0.4

0.8

-150 0 150

-0.4

0

0.4

0.8

C
o
e
ff
ic

ie
n
ts

 o
f 
z

-150 0 150
-0.4

0

0.4

0.8

-150 0 150
-0.4

0

0.4

0.8

-150 0 150

-0.4

0

0.4

0.8

-150 0 150
-0.4

0

0.4

0.8

-150 0 150

Powers of z

-0.4

0

0.4

0.8

-150 0 150

Figure 3: Λ(z) produced by using PEVD for the example in Fig. 2.
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Algorithm ∆SegSNR ∆FwSegSNR ∆STOI ∆PESQ
log-MMSE 3.69 dB 2.46 dB -0.007 0.08

MWF 1.07 dB 1.54 dB 0.002 0.15
O-MWF 4.67 dB 4.04 dB 0.084 0.31
PEVD 4.30 dB 4.00 dB 0.080 0.29

Table 1: Algorithm performance compared to noisy signal before
enhancement for speech corrupted by 5 dB babble noise example.

speech signal. PEVD outperforms both log-MMSE and MWF in all
aspects and is slightly worse than O-MWF by 0.37 dB in SegSNR,
0.04 dB in FwSegSNR, 0.004 in STOI and 0.02 in PESQ. In fact,
enhancement using log-MMSE results in a poorer STOI value for
this example. This example shows that the performance of PEVD
can be comparable to a supervised algorithm that uses prior knowl-
edge of the clean speech signal.

Fig. 2 shows R̂xx(z) for the above example used in PEVD.
In contrast to the PEVD, the eigenvalue decomposition (EVD) cor-
responds to the polynomial z0 in (4). Therefore, the EVD decor-
relates the signal only for one specific time lag. This only cor-
rects the phase at a particular frequency and is therefore, not fully
adequate for broadband signals which requires phase correction
at different lags for different frequencies. Instead, PEVD decor-
relates the signal across all time lags by accounting for different
phase shifts for different frequency components as demonstrated in
Fig. 3, where every off-diagonal element has a magnitude less than
δ = 3.2× 10−3 for this example.

Comparative results for the Monte-Carlo simulations com-
prising 150 trials involving white noise, babble noise and factory
noise are shown in Fig. 4, 6 and 7 respectively. As expected,
O-MWF performs the best in all metrics for almost all cases
because it uses prior knowledge of the clean speech signal. In
terms of STOI, PEVD outperforms log-MMSE and MWF under all
noise conditions and approaches O-MWF performance bound as
SNR increases. In terms of SegSNR and FwSegSNR, log-MMSE
performs better than PEVD by up to 5 dB at lower SNR but
PEVD performs better than log-MMSE at higher SNR. Both
log-MMSE and PEVD perform better than MWF even though the
MWF enhanced signal has a slight improvement in SegSNR and
FwSegSNR at lower SNR. In terms of PESQ, the performance
of PEVD approaches that of O-MWF at higher SNRs. Fig. 5
shows the standard deviation plots for SegSNR and STOI for the
white noise simulations which reflect the same trends for other
noise conditions. In addition, listening examples, provided on
https://www.commsp.ee.ic.ac.uk/\%7esap/pevd/,
have indicated that unlike log-MMSE and MWF, PEVD does not
introduce audible artefacts like musical noise or speech distortions
into the enhanced signal while reducing noise substantially.

4. CONCLUSION

We have introduced polynomial matrices as a multi-channel broad-
band signal model for speech which can capture the spatial, spectral
as well as temporal correlation between microphones and PEVD as
an approach to decorrelate simultaneously in space, time and fre-
quency. We then outlined a method of PEVD-based speech en-
hancement and have shown that noise reduction can be achieved us-
ing the weighted combination of the signal subspace. Comparative
simulations and informal listening examples indicate that the pro-
posed method improves both objective, SegSNR and FwSegSNR,
and subjective scores, STOI and PESQ, under the diverse range
of noise conditions without introducing any artefacts like musical
noise into the enhanced signal.
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Figure 4: Mean of the results for white noise involving 150 trials.
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Figure 6: Mean of the results for babble noise involving 150 trials.

-10 0 10 20 30
SNR (dB)

-10

0

10

20

M
e
a
n
 S

e
g
S

N
R

 (
d
B

)

Noisy
Log-MMSE
MWF
O-MWF
PEVD

-10 0 10 20 30
SNR (dB)

-10

0

10

20

M
e
a
n
 F

w
S

e
g
S

N
R

 (
d
B

)

-10 0 10 20 30
SNR (dB)

0.5

0.6

0.7

0.8

0.9

M
e
a
n
 S

T
O

I

-10 0 10 20 30
SNR (dB)

1.5

2

2.5

3

3.5

M
e
a
n
 P

E
S

Q

Figure 7: Mean of the results for factory noise involving 150 trials.
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